
User Documentation for cvodes,

An ODE Solver with Sensitivity Analysis Capabilities

Alan C. Hindmarsh Radu Serban

Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

UCRL-MA-148813
July 2002

DISCLAIMER
This document was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government nor the University of California
nor any of their employees, makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that its use would not infringe pri-
vately owned rights. Reference herein to any specific commercial products, process, or ser-
vice by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United States Government
or the University of California. The views and opinions of authors expressed herein do
not necessarily state or reflect those of the United States Government or the University of
California, and shall not be used for advertising or product endorsement purposes.

Work performed under the auspicies of the U.S. Department of Energy by the University
of California Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

Contents

1 Introduction 1
1.1 Historical Background . 1
1.2 Reading this User Guide . 2

2 Mathematical Considerations 4
2.1 IVP Solution . 4
2.2 Forward Sensitivity Analysis . 6
2.3 Adjoint Sensitivity Analysis . 10
2.4 BDF Stability Limit Detection . 12

3 Code Organization 14
3.1 sundials Organization . 14
3.2 cvodes Organization . 15

4 Using cvodes for IVP Solution 19
4.1 Header Files . 19
4.2 A Skeleton of the User’s Main Program . 20
4.3 User-Callable Routines for IVP Solution . 22

4.3.1 cvodes Initialization Routine . 22
4.3.2 Linear Solver Specification Routines . 23
4.3.3 cvodes Solver Routine . 28
4.3.4 Optional Input/Output . 29
4.3.5 Interpolated Output Routines . 29
4.3.6 cvodes Reinitialization Routine . 31
4.3.7 Linear Solver Reinitialization Routines . 32

4.4 User-Supplied Routines for IVP Solution . 34
4.5 cvodes Preconditioner Modules . 38

4.5.1 A Serial Banded Preconditioner Module . 38
4.5.2 A Parallel Band-Block-Diagonal Preconditioner Module 40

5 Using cvodes for Forward Sensitivity Analysis 43
5.1 A Skeleton of the User’s Main Program . 43
5.2 User-Callable Routines for Forward Sensitivity Analysis 45

5.2.1 Forward Sensitivity Initialization Routine . 45
5.2.2 Forward Sensitivity Extraction Routine . 47
5.2.3 Additional Optional Input/Output . 47
5.2.4 Additional Diagnostics Extraction Routine 48
5.2.5 Interpolated Sensitivity Output Routines . 48
5.2.6 Forward Sensitivity Reinitialization Routine 49

5.3 User-Supplied Routines for Forward Sensitivity Analysis 49

i

6 Using cvodes for Adjoint Sensitivity Analysis 52
6.1 A Skeleton of the User’s Main Program . 52
6.2 User-Callable Routines for Adjoint Sensitivity Analysis 54

6.2.1 Adjoint Sensitivity Allocation Routine . 54
6.2.2 Forward Integration Routine . 54
6.2.3 Backward Problem Initialization Routine . 54
6.2.4 Linear Solver Initialization Routines for Backward Problem 55
6.2.5 Backward Integration Routine . 56
6.2.6 Adjoint Sensitivity Deallocation Routine . 57
6.2.7 Check Point Listing Routine . 57

6.3 User-Supplied Routines for Adjoint Sensitivity Analysis 57
6.4 Using the Banded Preconditioner Module for Adjoint Sensitivity Analysis 60

7 Example Problems for IVP Solution 62
7.1 A Serial Sample Problem . 63
7.2 A Parallel Sample Program . 65

8 Example Problems for Forward Sensitivity Analysis 69
8.1 A Serial Sample Problem . 69
8.2 A Parallel Sample Program . 75

9 Example Problems for Adjoint Sensitivity Analysis 82
9.1 A Serial Sample Problem . 83
9.2 A Parallel Sample Program . 85

10 Types realtype and integertype 89
10.1 Description . 89
10.2 Changing Type realtype . 89
10.3 Changing Type integertype . 90

11 Description of the nvector Concept 91
11.1 The nvector serial Implementation of nvector 95
11.2 The nvector parallel Implementation of nvector 97
11.3 nvector Kernels Used by cvodes . 100

12 Providing Alternate Linear Solver Modules 102

13 Generic Linear Solvers in sundials 105
13.1 The dense Module . 105
13.2 The band Module . 108
13.3 The spgmr Module . 111

References 112

Index 113

ii

A Listings of cvodes IVP Solution Examples 118
A.1 A Serial Sample Problem - cvdx.c . 118
A.2 A Parallel Sample Program - pvkx.c . 123

B Listings of cvodes Forward Sensitivity Examples 142
B.1 A Serial Sample Problem - cvfdx.c . 142
B.2 A Parallel Sample Program - pvfkx.c . 150

C Listings of cvodes Adjoint Sensitivity Examples 172
C.1 A Serial Sample Problem - cvadx.c . 172
C.2 A Parallel Sample Program - pvanx.c . 179

iii

List of Tables

1 List of files in the cvodes package . 18
2 Description of the optional integer input-output array iopt 30
3 Description of the optional real input-output array ropt 31
4 Additional optional integer output from forward sensitivity 48
5 Description of the nvector kernels . 93
6 List of vector kernels usage by cvodes code modules 101

iv

List of Figures

1 Organization of the sundials suite . 14
2 Overall structure diagram of the cvodes package . 16
3 Diagram of the user program and cvodes package for integration of IVP 21
4 Diagram of the storage for a matrix of type BandMat 109

v

1 Introduction

cvodes is part of a software family called sundials: SUite of Nonlinear and DIfferential/ALgebraic
equation Solvers. This suite consists of cvode, kinsol, and ida, and variants of these. cvodes

is a solver for stiff and nonstiff initial value problems for systems of ordinary differential equation
(ODEs). In addition to solving stiff and nonstiff ODE systems, cvodes has sensitivity analysis
capabilities, using either the forward or the adjoint methods.

1.1 Historical Background

Fortran solvers for ODE initial value problems are widespread and heavily used. Two solvers
that have been written at LLNL in the past are vode [1] and vodpk [3]. vode is a general purpose
solver that includes methods for stiff and nonstiff systems, and in the stiff case uses direct methods
(full or banded) for the solution of the linear systems that arise at each implicit step. Externally,
vode is very similar to the well known solver lsode [14]. vodpk is a variant of vode that uses
a preconditioned Krylov (iterative) method for the solution of the linear systems. vodpk is a
powerful tool for large stiff systems because it combines established methods for stiff integration,
nonlinear iteration, and Krylov (linear) iteration with a problem-specific treatment of the dominant
source of stiffness, in the form of the user-supplied preconditioner matrix [2]. The capabilities of
both vode and vodpk have been combined in the C-language package cvode [7, 8].

In the process of translating the vode and vodpk algorithms into C, the overall cvode organi-
zation has been changed considerably. One key feature of the cvode organization is that the linear
system solvers comprise a layer of code modules that is separated from the integration algorithm,
allowing for easy modification and expansion of the linear solver array. A second key feature is
a separate module devoted to vector operations; this facilitated the extension to multiprosessor
environments with minimal impacts on the rest of the solver, resulting in pvode [4], the parallel
variant of cvode.

cvodes is written with a functionality that is a superset of that of the pair cvode/pvode.
Sensitivity analysis capabilities, both forward and adjoint, have been added to the main integrator.
Enabling forward sensititivity computations in cvodes will result in the code integrating the so-
called sensitivity equations simultaneously with the original IVP, yielding both the solution and
its sensitivity with respect to parameters in the model. Adjoint sensitivity analysis, most useful
when the gradients of relatively few functionals of the solution with respect to many parameters
are sought, involves integration of the original IVP forward in time followed by the integration of
the so-called adjoint equations backwards in time. cvodes provides the infrastructure needed to
integrate any final-condition ODE dependent on the solution of the original IVP (in particular the
adjoint system).

Development of cvodes was concurrent with a redesign of the vector operations module across
the sundials suite. The key feature of the new nvector module is that it is written in terms of
abstract vector operations with the actual vector kernels attached by a particular implementation
(such as serial or parallel) of nvector. This allows writing the sundials solvers in a manner inde-
pendent of the actual nvector implementation (which can be user-supplied), as well as allowing
more than one nvector module linked into an executable file.

There are several motivations for choosing the C language for cvode and later for cvodes.
First, a general movement away from Fortran and toward C in scientific computing is apparent.

1

Second, the pointer, structure, and dynamic memory allocation features in C are extremely useful
in software of this complexity, with the great variety of method options offered. Finally, we prefer
C over C++ for cvodes because of the wider availability of C compilers, the potentially greater
efficiency of C, and the greater ease of interfacing the solver to applications written in extended
Fortran.

1.2 Reading this User Guide

This user guide is a combination of general usage instructions and specific example programs. We
expect that some readers will want to concentrate on the general instructions, while others will
refer mostly to the examples, and the organization is intended to accommodate both styles.

There are different possible levels of usage of cvodes. The most casual user, with an IVP
problem only, can get by with reading §2.1, then §4 through §4.3.3 only, and looking at examples
in §7 and App. A. In addition, to solve a forward sensitivity problem the user should read
§2.2, followed by §5 through §5.2.2 only, and look at examples in §8 and App. B. In a different
direction, a more expert user with an IVP problem may want to (a) use a package preconditioner
(§4.5), (b) supply his/her own Jacobian or preconditioner routines (§4.4), (c) do multiple runs of
problems of the same size (§4.3.6 and §4.3.7), (d) supply a new nvector module (§11), or even (e)
supply a different linear solver module (§3.2 and §13). An advanced user with a forward sensitivity
problem may also want to (a) provide his/her own sensitivity equations right-hand side routine
(§5.3), (b) perform multiple runs with the same number of sensitivity parameters (§5.2.6), or (c)
extract additional diagnostic information (§5.2.2). A user with an adjoint sensitivity problem needs
to understand the IVP solution approach at the desired level and also go through §2.3 for a short
mathematical description of the adjoint approach, §6 for the usage of the adjoint module in cvodes,
and the examples in §9 and App. C.

The structure of this document is as follows:

• In §2, we begin with short descriptions of the numerical methods implemented by cvodes

for the solution of initial value problems for systems of ODEs and continue with an overview
of the mathematical aspects of sensitivity analysis, both forward (§2.2) and adjoint (§2.3).

• The following section describes the structure of the sundials suite of solvers (§3.1) and the
software organization of the cvodes solver (§3.2).

• In §4, we give an overview of the usage of cvodes, as well as a complete description of the
user interface and of the user-defined routines for integration of IVP ODEs. Readers that are
not interested in using cvodes for sensitivity analysis can then skip to the example programs.

• Section 5 describes the usage of cvodes for forward sensitivity analysis as an extension of
its IVP integration capabilities. We begin with a skeleton of the user main program, with
emphasis on the steps that are required in addition to those already described in §4. Following
that we provide detailed descriptions of the user-callable interface routines specific to forward
sensitivity analysis and of the additonal optional user-defined routines.

• Section §6 describes the usage of cvodes for adjoint sensitivity analysis. We begin by describ-
ing the cvodes check-pointing implementation for interpolation of the original IVP solution
during integration of the adjoint system backwards in time and with an overview of the user

2

main program. Following that we provide complete descriptions of the user-callable inter-
face routines for adjoint sensitivity analysis as well as descriptions of the required additional
user-defined routines.

• The subsequent sections contain sample programs that illustrate the usage of cvodes with dif-
ferent choices of the linear system solvers for integration of IVP ODEs (§7), forward sensitivity
analysis (§8), and adjoint sensitivity analysis (§9) with code listings provided in Appendices
A, B, and C, respectively. Each of these sections is self-contained and provides both serial
and parallel examples. In each case, we give the program source, a step-by-step explanation
of the program, and the output. Our intention is that these programs will enable the user to
learn cvodes by example, and each can serve as a template for user programs.

• Section 10 describes the realtype and integertype type definitions used across the sundials

solvers, as well as instructions on changing these definitions.

• Section 11 gives a brief overview of the generic nvector module shared among the various
components of sundials, as well as details on the two nvector implementations provided
with sundials: a serial implementation (§11.1) and a parallel implementation, based on MPI
(§11.2).

• Section 13 describes in details the generic linear solvers shared by all sundials solvers.

• Appendices A-C contain the code listings of the six cvodes sample programs described in
detail in this document.

Finally, the reader should be aware of the following notational conventions in this user guide:
program listings and identifiers (such as CVodeMalloc) within textual explanations appear in type-
writer type style; fields in C structures (such as content) appear in italics; and packages or modules,
such as cvdense, are written in all capitals.

3

2 Mathematical Considerations

cvodes solves initial-value problems (IVPs) for systems of ODEs. Such problems can be stated as

ẏ = f(t, y)

y(t0) = y0 ,
(1)

where y ∈ RN , ẏ = dy/dt and RN is the real N -dimensional vector space. That is, (1) represents a
system of N ordinary differential equations and their initial conditions at some t0. The dependent
variable is y and the independent variable is t. The independent variable need not appear explicitly
in the N -vector valued function f .

Additionally, if (1) depends on some parameters p ∈ RNp , i.e.

ẏ = f(t, y, p)

y(t0) = y0(p) ,
(2)

cvodes can also compute first order derivative information, performing either forward sensitivity
analysis or adjoint sensitivity analysis. In the first case, cvodes computes the sensitivities of the
solution with respect to the parameters p, while in the second case, cvodes computes the gradient
of a derived function with respect to the parameters p.

2.1 IVP Solution

The IVP is solved by one of two numerical methods. These are the backward differentiation formula
(BDF) and the Adams-Moulton formula . Both are implemented in a variable-stepsize, variable-
order form. The BDF uses a fixed-leading-coefficient form. These formulas can both be represented
by a linear multistep formula

K1
∑

i=0

αn,iyn−i + hn

K2
∑

i=0

βn,iẏn−i = 0 (3)

where the N -vector yn is the computed approximation to y(tn), the exact solution of (1) at tn.
The stepsize is hn = tn − tn−1. The coefficients αn,i and βn,i are uniquely determined by the
particular integration formula, the history of the stepsize, and the normalization αn,0 = −1. The
Adams-Moulton formula is recommended for nonstiff ODEs and is represented by (3) with K1 = 1
and K2 = q − 1. The order of this formula is q and its values range from 1 through 12. For stiff
ODEs, BDF should be selected and is represented by (3) with K1 = q and K2 = 0. For BDF, the
order q may take on values from 1 through 5. In the case of either formula, the integration begins
with q = 1, and after that q varies automatically and dynamically.

For either BDF or the Adams formula, ẏn denotes f(tn, yn). That is, (3) is an implicit formula,
and the nonlinear equation

G(yn) ≡ yn − hnβn,0f(tn, yn)− an = 0

an =
∑

i>0

(αn,iyn−i + hnβn,iẏn−i)
(4)

must be solved for yn at each time step. For nonstiff problems, functional (or fixpoint) iteration is
normally used and does not require the solution of a linear system of equations. For stiff problems,

4

a Newton iteration is used and for each iteration an underlying linear system must be solved. This
linear system of equations has the form

M [yn(m+1) − yn(m)] = −G(yn(m)) , (5)

where yn(m) is the mth approximation to yn, and M approximates ∂G/∂y:

M ≈ I − γJ, J =
∂f

∂y
, γ = hnβn,0 . (6)

At present, aside from a diagonal Jacobian approximation, the other options implemented in
cvodes for solving the linear systems (5) are:

• a direct method with dense treatment of the Jacobian;

• a direct method with band treatment of the Jacobian;

• an iterative method spgmr (scaled, preconditioned GMRES) [2], which is a Krylov subspace
method. In most cases, performance of spgmr is improved by user-supplied preconditioners.
The user may precondition the system on the left, on the right, on both the left and right, or
use no preconditioner.

In most cases of interest to the cvodes user, the technique of integration will involve BDF and the
Newton method coupled with one of the linear solver modules.

The integrator computes an estimate En of the local error at each time step, and strives to
satisfy the following inequality

‖En‖rms,w < 1 .

Here the weighted root-mean-square norm is defined by

‖En‖rms,w =

[

N
∑

i=1

1

N
(wiEn,i)

2

]1/2

, (7)

where En,i denotes the ith component of En, and the ith component of the weight vector is

wi =
1

rtol|yi|+ atoli
. (8)

This permits an arbitrary combination of relative and absolute error control. The user-specified
relative error tolerance is the scalar rtol and the user-specified absolute error tolerance is atol which
may be an N -vector (as indicated above) or a scalar. The value for rtol indicates the number of
digits of relative accuracy for a single time step. The specified value for atoli indicates the values
of the corresponding component of the solution vector which may be thought of as being zero, or
at the noise level. In particular, if we set atoli = rtol × floori then floori represents the floor
value for the ith component of the solution and is that magnitude of the component for which
there is a crossover from relative error control to absolute error control. Since these tolerances
define the allowed error per step, they should be chosen conservatively. Experience indicates that
a conservative choice yields a more economical solution than error tolerances that are too large.

The error control mechanism in cvodes varies the stepsize and order in an attempt to take
minimum number of steps while satisfying the local error test. The order control can be (option-
ally) modified with an algorithm that attempts to detect limitations resulting from BDF stability
properties.

5

2.2 Forward Sensitivity Analysis

Typically, the governing equations of complex, large-scale models depend on various parameters,
through the right-hand side vector and/or through the vector of initial conditions:

ẏ = f(t, y, p)

y(t0) = y0(p) ,
(9)

where y ∈ RN and p ∈ RNp . In addition to numerically solving the ODEs, it may be desirable
to determine the sensitivity of the results with respect to the model parameters. Such sensitivity
information can be used to estimate which parameters are most influential in affecting the behavior
of the simulation or to evaluate optimization gradients (in the setting of dynamic optimization,
parameter estimation, optimal control, etc.).

The solution sensitivity with respect to the model parameter pi is defined as the vector:

si(t) =
∂y(t)

∂pi
(10)

and satisfies the following forward sensitivity equations (or in short sensitivity equations):

ṡi =
∂f

∂y
si +

∂f

∂pi

si(t0) =
∂y0(p)

∂pi
,

(11)

which are obtained by applying the chain rule of differentiation to the original ODEs (9). The
initial sensitivity vector si(t0) is either all zeros (if pi occurs only in f), or has nonzeros according
to how y0(p) depends on pi.

When performing forward sensitivity analysis, cvodes carries out the time integration of the
combined system, (9) and (11), by viewing it as an ODE system of size N(Ns + 1), where Ns

represents a subset of model parameters pi, with respect to which sensitivities are desired (Ns ≤ Np).
However, major efficiency improvements can be obtained by taking advantage of the special form
of the sensitivity equations as linearizations of the original ODEs. In particular, for stiff systems,
in which case cvodes employs a Newton iteration, the original ODE system and all sensitivity
systems share the same Jacobian matrix, and therefore the same iteration matrix M in (6).

The sensitivity equations are solved with the same linear multistep formula that was selected
for the original ODEs and, if Newton iteration was selected, the same linear solver is used in the
correction phase for both state and sensitivity variables. In addition, cvodes offers the option of
including (full error control) or excluding (partial error control) the sensitivity variables from the
local error test.

Forward sensitivity methods. In what follows we briefly describe three methods that have
been proposed for the solution of the combined ODE and sensitivity system. Due to its inefficiency,
especially for large-scale problems, the first approach is not implemented in cvodes.

• Staggered Direct Method

6

In this method [6], the nonlinear system (4) is first solved and, once an acceptable numerical
solution is obtained, the sensitivity variables are found by the direct solution of

ṡi −
∂f

∂y
si =

∂f

∂pi
, (12)

where the BDF discretization is used to eliminate ṡi. Although the system matrix of the
above linear system is based on the exact same information as the matrix M in (6), it must
be updated and factored at every step of the integration as M is updated only ocasionally.
The computational cost associated with these matrix updates and factrorizations makes this
method unattractive when compared with the methods described below and is therefore not
implemented in cvodes.

• Simultaneous Corrector Method
In this method [13], the BDF discretization is applied simultaneously to both the original
equations (9) and the sensitivity systems (11) resulting in the following nonlinear system

Ĝ(ŷn) ≡ ŷn − hnβn,0f̂(tn, ŷn)− ân = 0 ,

where ŷ = [y, . . . , si, . . .] and f̂ = [f(t, y, p), . . . , (∂f/∂y)(t, y, p)si + (∂f/∂pi)(t, y, p), . . .] and
ân are the terms in the BDF discretization that depend on the solution at previous integration
steps. This combined nonlinear system can be solved as in (5) using a modified Newton
method by solving the corrector equation

M̂ [ŷn(m+1) − ŷn(m)] = −Ĝ(ŷn(m)) (13)

at each iteration, where

M̂ =















M
γJ1 M
γJ2 0 M
...

...
. . .

. . .

γJNs 0 . . . 0 M















,

M is defined as in (6), and Ji = (∂/∂y) [(∂f/∂y)si + (∂f/∂pi)]. It can be shown that a
2-step quadratic convergence can be attained by only using the block-diagonal portion of
M̂ in the corrector equation (13). This results in a decoupling that allows the reuse of M
without additional matrix factorizations. However, the products (∂f/∂y)si as well as the
vectors ∂f/∂pi must still be reevaluated at each step of the iterative process (13) to update
the sensitivity portions of the residual Ĝ.

• Staggered Corrector Method
In the staggered corrector method [9], as in the staggered direct method, the nonlinear system
(4) is solved first using the Newton iteration (5). Then, a separate Newton iteration is used
to solve the sensitivity system (12):

M [si,n(m+1) − si,n(m)] = si,n(m) − γ

(

∂f

∂y
(tn, yn, p)si,n(m) +

∂f

∂pi
(tn, yn, p)

)

− ai,n , (14)

7

where ai,n =
∑

j>0(αn,jsi,n−j + hnβn,j ṡi,n−j). In other words, a modified-Newton iteration
is used to solve a linear system. In this approach, the vectors ∂f/∂pi need be updated only
once per integration step, after the state correction phase (5) has converged. Note also that
Jacobian-related data can be reused at all iterations (14) to evaluate the products (∂f/∂y)si.

cvodes implements the simultaneous corrector method and two flavors of the staggered cor-
rector method which differ only if the sensitivity variables are included in the error control test.
In the full error control case, the first variant of the staggered corrector method requires the con-
vergence of the iterations (14) for all Ns sensitivity sytems and then performs the error test on
the sensitivity variables. The second variant of the method will perform the error test for each
sensitivity vector si, i = 1, 2, . . . , Ns individually, as they pass the convergence test. Differences
in performance between the two variants may therefore be noticed whenever one of the sensitivity
vectors si fails a convergence or error test.

An important observation is that the staggered corrector method, combined with the spgmr

linear solver effectively results in a staggered direct method. Indeed, spgmr requires only the
action of the matrix M on a vector and this can be provided with the current Jacobian information.
Therefore, the modified Newton procedure (14) will theoretically converge after one iteration.

Selection of the absolute tolerances for sensitivity variables. If the sensitivities are con-
sidered in the error test, cvodes provides an automated estimation of absolute tolerances for the
sensitivity variables based on the absolute tolerance for the corresponding state variable. The se-
lection of atol for the sensitivity variables is based on the observation that the sensitivity vector si

will have units of [y]/[pi]. With this, the absolute tolerance for the j-th component of the sensitivity
vector si is set to

atolSi,j =
atolj
|p̄i|

,

where atol are the absolute tolerances for the state variables and p̄ is a vector of scaling factors
that are dimensionally consistent with the model parameters p and give indication of their order of
magnitude. Typically, if pi 6= 0, then p̄i = pi. The relative tolerance rtolS for sensitivity variables
is set to be the same as for the state variables, i.e. rtolS = rtol. This choice of relative and
absolute tolerances is equivalent to requiring that the weighted root-mean-square norm (7) of the
sensitivity vector si with weights (8) based on si is the same as the weighted root-mean-square
norm of the vector of scaled sensitivities s̄i = |p̄i|si with weights based on the state variables (the
scaled sensitivities s̄i being dimensionally consistent with the state variables).

Evaluation of the sensitivity right-hand side. There are several methods for evaluating the
right-hand side of the sensitivity systems [(∂f/∂y)si + (∂f/∂pi)]: analytic evaluation, automatic
differentiation, complex-step approximation, finite differences (or directional derivatives). cvodes

provides all the software hooks for implementing interfaces to automatic differentiation or complex-
step approximation and future versions will provide these capabilities. At the present time, besides
the option for analytical sensitivity right hand sides (user-provided), cvodes can evaluate these
quantities using various finite difference-based approximations. The first option applies central

8

finite differences to each term separately:

∂f

∂y
si ≈

f(t, y + δysi, p)− f(t, y − δysi, p)

2 δy
(15)

∂f

∂pi
≈ f(t, y, p+ δiei)− f(t, y, p− δiei)

2 δi
. (15’)

As is typical for finite differences, the proper choice of perturbations δy and δi is a delicate matter.
cvodes uses δy and δi that take into account several problem-related features; namely, the relative
ODE error tolerance rtol, the machine unit roundoff ε, the scale factor p̄i, and the weighted root-
mean-square norm of the sensitivity vector si. We then define

δi = |p̄i|
√

max(rtol, ε); δy =
|p̄i|

max(1/δi, ‖si‖rms,w)
.

The terms ε and 1/δi are included as divide-by-zero safeguards in case rtol = 0 or ||si|| = 0.
Roughly speaking (i.e., if the safeguard terms are ignored), δi gives a

√
rtol relative perturbation

to the scaled parameter i, and δy gives a unit weighted rms norm perturbation to y. Of course, the
main drawback of this approach is that it requires four evaluations of f(t, y, p).

Another technique for estimating the scaled sensitivity derivatives via centered differences is by
using directional derivatives:

∂f

∂y
si +

∂f

∂pi
≈ f(t, y + δsi, p+ δei)− f(t, y − δsi, p− δei)

2 δ
, (16)

in which
δ = min(δi, δy) .

If δi = δy = δ, a Taylor series analysis shows that the sum of (15)–(15’) and (16) are equivalent to
within O(δ2). However, the latter approach is half as costly since it only requires two evaluations
of f(t, y, p). To take advantage of this savings, it may also be desirable to use the latter formula
when δi ≈ δy. cvodes accommodates this possibility by allowing the user to specify a threshold
parameter ρmax. In particular, if δi and δy are within a factor of |ρmax| of each other then (16) is
used to estimate the scaled sensitivity derivatives. Otherwise, the sum of (15)–(15’) is used since
δi and δy differ by a relatively large amount and the use of separate perturbations is prudent.

These procedures for choosing the perturbations (δi, δy, δ) and switching (ρmax) between finite
difference and directional derivative formulas have also been implemented for first-order formu-
las. Forward finite differences can be applied to ∂f

∂y si and ∂f
∂pi

separately or the single directional
derivative formula

∂f

∂y
si +

∂f

∂pi
≈ f(t, y + δsi, p+ δei)− f(t, y, p)

δ

can be used. In cvodes, the default value of ρmax = 0 indicates the use of the second-order
centered directional derivative formula (16) exclusively. Otherwise, the magnitude of ρmax and
its sign (positive or negative) indicates whether this switching is done with regard to (centered or
forward) finite differences, respectively.

9

2.3 Adjoint Sensitivity Analysis

In the forward sensitivity approach described in the previous section, obtaining sensitivities with
respect to Ns parameters is roughly equivalent to solving an ODE system of size (1 +Ns)N . This
can become prohibitively expensive, especially for large-scale problems, if sensitivities with respect
to many parameters are desired. In this situation, the adjoint sensitivity method is a very attractive
alternative, provided that we do not need the solution sensitivities si, but rather the gradients with
respect to model parameters of a relatively few derived functionals of the solution. In other words,
if y(t) is the solution of (9), we wish to evaluate the gradient dG

dp with respect to p of

G(p) =

∫ t1

t0

g(t, y, p)dt , (17)

or, alternatively, the gradient dg
dp of the function g(t, x, p) at time t1. The function g must be smooth

enough that gp and gx exist and are bounded. In what follows, we only sketch the analysis for the
sensitivity problem for both G and g. For details on the derivation see [5]. Introducing a Lagrange
multiplier λ, we form the augmented objective function

I(p) = G(p)−
∫ t1

t0

λ∗ (ẏ − f(t, y, p)) dt , (18)

where ∗ denotes the transpose conjugate. The gradient of G with respect to p is

dG

dp
=

dI

dp
=

∫ t1

t0

(gp + gys)dt−
∫ t1

t0

λ∗ (ṡ− fys− fp) dt , (19)

where subscripts on functions such as f or g are used to denote partial derivatives and s =
[s1, . . . , sNs] is the matrix of solution sensitivities. Applying integration by parts to the term
λ∗ṡ and selecting λ such that

λ̇ = −
(

∂f

∂y

)

∗

λ−
(

∂g

∂y

)

∗

λ(t1) = 0 ,

(20)

the gradient of G with respect to p is nothing but

dG

dp
= λ∗(t0)s(t0) +

∫ t1

t0

(gp + λ∗fp) dt . (21)

The gradient of g(t1, y, p) with respect to p can be then obtained by using the Leibnitz differentiation
rule. Indeed, from (17),

dg

dp
(t1) =

d

dt1

dG

dp

and therefore, taking into account that dG/dp in (21) depends on t1 both through the upper
integration limit and through λ and that λ(t1) = 0,

dg

dp
(t1) = µ∗(t0)s(t0) + gp(t1) +

∫ t1

t0

µ∗fpdt , (22)

10

where µ is the sensitivity of λ with respect to the final integration limit and thus satisfies the
following equation, obtained by taking the total derivative with respect to t1 of (20):

µ̇ = −
(

∂f

∂y

)

∗

µ

µ(t1) =

(

∂g

∂y

)

∗

.

(23)

The final condition on µ(t1) follows from (∂λ/∂t)+(∂λ/∂t1) = 0 at t1, and therefore, µ(t1) = −λ̇(t1).
The first thing to notice about the adjoint system (20) is that there is no explicit specification

of the parameters p; this implies that, once the solution λ is found, the formula (21) can then be
used to find the gradient of G with respect to any of the parameters p. The same holds true for
the system (23) and the formula (22) for gradients of g(t1, y, p). The second important remark is
that the adjoint systems (20) and (23) are terminal value problems which depend on the solution
y(t) of the original IVP (9). Therefore, a procedure is needed for providing the states y obtained
during a forward integration phase of (9) to cvodes during the backward integration phase of (20)
or (23). The approach adopted in cvodes, based on check-pointing is described below.

Check-pointing scheme. During the backward integration, the evaluation of the right hand
side of the adjoint system requires, at the current time, the states y which were computed in
the forward integration phase. Since cvodes implements variable-stepsize integration formulas,
it is unlikely that the states will be available at the desired time and therefore some form of
interpolation is needed. The cvodes implementation being also variable-order, it is possible that
during the forward integration phase the order may be reduced as low as 1st order, which means
that there may be points in time where only y and ẏ are available. Therefore, cvodes employs
a cubic Hermite interpolation algorithm. However, especially for large-scale problems and long
integration intervals, the number and size of the vectors y and ẏ that would need to be stored make
this approach computationally intractable.

cvodes settles for a compromise storage space - execution time by implementing a so-called
check-pointing scheme. At the cost of one additional forward integration, this approach offers the
best possible estimate of memory requirements for adjoint sensitivity analysis. To begin with, based
on the problem size N and the available memory, the user decides on the number Nd of data pairs
y-ẏ that can be kept in memory for the purpose of interpolation. Then, during the first forward
integration stage, every Nd integration steps a check point is formed by saving enough information
(either in memory or on disk if needed) to allow for a hot restart, that is a restart which will
exactly reproduce the forward integration. In order to avoid storing Jacobina-related data at each
check point, a reevaluation of the iteration matrix is forced before each check point. At the end of
this stage, we are left with Nc check points, including one at t0. During the backward integration
stage, the adjoint variables are integrated from t1 to t0 going from one check point to the previous
one. The backward integration from check point i + 1 to check point i is preceeded by a forward
integration from i to i+ 1 during which Nd data pairs y-ẏ are generated and stored in memory for
interpolation.

This approach transfers the uncertainty in the number of integration steps in the forward
integration phase to uncertainty in the final number of check points. However, Nc is much smaller
than the number of steps taken during the forward integration and there is no major penalty for
writting and then reading check point data to/from a temporary file.

11

Finally, we note that the adjoint sensitivity module in cvodes provides the infrastructure to
integrate backwards in time any ODE terminal value problem dependent on the solution of the
IVP (9), including adjoint systems (20) or (23), as well as any other quadrature ODEs that may be
needed in evaluating the integrals in (21) or (22). In particular, for ODE systems arising from semi-
discretization of time-dependent PDEs, this feature allows for integration of both the discretized
adjoint PDE system and the adjoint of the discretized PDE.

2.4 BDF Stability Limit Detection

cvodes includes an algorithm, stald (STAbility Limit Detection), which provides protection
against potentially unstable behavior of the BDF multistep integration methods is certain situ-
ations, as described below.

When the BDF option is selected, cvodes uses Backward Differentiation Formula methods
of orders 1 to 5. At order 1 or 2, the BDF method is A-stable, meaning that for any complex
constant λ in the open left half-plane, the method is unconditionally stable (for any step size) for
the standard scalar model problem dy/dt = λy. For an ODE system, this means that, roughly
speaking, as long as all modes in the system are stable, the method is also stable for any choice of
step size, at least in the sense of a local linear stability analysis.

At orders 3 to 5, the BDF methods are not A-stable, although they are stiffly stable. In each
case, in order for the method to be stable at step size h on the scalar model problem, the product
hλ must lie in a region of absolute stability. That region excludes a portion of the left half-plane
that is concentrated near the imaginary axis. The size of that region of instability grows as the
order increases from 3 to 5. What this means is that, when running BDF at any of these orders, if
an eigenvalue λ of the system lies close enough to the imaginary axis, the step sizes h for which the
method is stable are limited (at least according to the linear stability theory) to a set that prevents
hλ from leaving the stability region. The meaning of close enough depends on the order. At order
3, the unstable region is much narrower than at order 5, so the potential for unstable behavior
grows with order.

System eigenvalues that are likely to run into this instability are ones that correspond to weakly
damped oscillations. A pure undamped oscillation corresponds to an eigenvalue on the imaginary
axis. Problems with modes of that kind call for different considerations, since the oscillation gener-
ally must be followed by the solver, and this requires step sizes (h ∼ 1/ν, where ν is the frequency)
that are stable for BDF anyway. But for a weakly damped oscillatory mode, the oscillation in the
solution is eventually damped to the noise level, and at that time it is important that the solver
not be restricted to step sizes on the order of 1/ν. It is in this situation that the new option may
be of great value.

In terms of partial differential equations, the typical problems for which the stability limit
detection option is appropriate are semi-discrete ODE systems (i.e. discretized in space) from
PDEs with advection and diffusion, but with advection dominating over diffusion. Diffusion alone
produces pure decay modes, while advection tends to produce undamped oscillatory modes. A mix
of the two with advection dominant will have weakly damped oscillatory modes.

The stald algorithm attempts to detect, in a direct manner, the presence of a stability region
boundary that is limiting the step sizes in the presence of a weakly damped oscillation [10]. The
algorithm supplements (but differs greatly from) the existing algorithms in cvodes for choosing
step size and order based on estimated local truncation errors. The stald algorithm works directly

12

with history data that is readily available in cvodes. If it concludes that the step size is in
fact stability-limited, it dictates a reduction in the method order, regardless of the outcome of
the error-based algorithm. The stald algorithm has been tested in combination with the vode

solver on linear advection-dominated advection-diffusion problems [11], where it works well. The
implementation in cvodes has been successfully tested on linear and nonlinear advection-diffusion
problems, among others.

This stability limit detection option adds some overhead computational cost to the cvodes

solution. (In timing tests, these overhead costs have ranged from 2% to 7% of the total, depending
on the size and complexity of the problem, with lower relative costs for larger problems.) Therefore,
it should be activated only when there is reasonable expectation of modes in the user’s system for
which it is appropriate. In particular, if a cvodes solution with this option turned off appears to
take an inordinately large number of steps at orders 3-5 for no apparent reason in terms of the
solution time scale, then there is a good chance that step sizes are being limited by stability, and
that turning on the option will improve the efficiency of the solution.

13

cvodeshared cvodes

include include include

source source source

examples

lib

doc

sundials

examples

lib

doc

kinsol ida

include include

source source

examples examples

lib

doc

lib

doc

lib

doc

nvector.c
dense.c
spgmr.c
...
Makefile

sundialsmath.c

nvector.h
dense.h
spgmr.h
...

sundialstypes.h
sundialsmath.h

cvode.h
cvdense.h
cvspgmr.h
...

cvodes.h
cvodea.h
cvsdense.h
cvsspgmr.h
...

cvode.c
cvdense.c
cvspgmr.c
...

cvodes.c
cvodea.c
cvsdense.c
cvsspgmr.c
...
Makefile

Makefile

Makefile

fwd_examples

adj_examples

kinsol.h
kinspgmr.h
...

ida.h
idadense.h
idaspgmr.h
...

kinsol.c
kinspgmr.c
...

ida.c
idadense.c
idaspgmr.c
...
Makefile

Makefile

Figure 1: Organization of the sundials suite

3 Code Organization

3.1 sundials Organization

The family of solvers referred to as sundials consists of solvers cvode (for ODE systems), kinsol

(for nonlinear algebraic systems), and ida (for differential-algebraic systems). In addition, variants
of these which also do sensitivity analysis calculations are available or in development. cvodes,
an extension of cvode that provides both forward and adjoint sensitivity capabilities is available,
while idas and kinsols are currently in development.

The various solvers of this family share many subordinate modules. For this reason, it is
organized as a family, with a directory structure that exploits that sharing (see Fig. 1). The
following is a list of the solver packages presently available:

• cvode, a solver for stiff and nonstiff ODE systems dy/dt = f(t, y);

• cvodes, a solver for stiff and nonstiff ODE systems dy/dt = f(t, y) with sensitivity analysis
capabilities;

• kinsol, a solver for nonlinear algebraic systems F (u) = 0;

• ida, a solver for differential-algebraic systems F (t, y, y′) = 0.

14

3.2 cvodes Organization

The cvodes package is written in the ANSI C language. The following summarizes the basic
structure of the package, although knowledge of this structure is not necessary for its use.

The overall organization of the cvodes package is shown in Figure 2. The basic elements of the
structure are a module for the basic integration algorithm (including forward sensitivity analysis),
a module for adjoint sensitivity analysis, and a set of modules for the solution of linear systems
that arise in the case of a stiff system.

The central integration module, implemented in the files cvodes.h and cvodes.c, deals with
the evaluation of integration coefficients, the functional or Newton iteration process, estimation of
local error, selection of stepsize and order, and interpolation to user output points, among other
issues. Although this module contains logic for the basic Newton iteration algorithm, it has no
knowledge of the method being used to solve the linear systems that arise. For any given user
problem, one of the linear system modules is specified, and is then invoked as needed during the
integration.

In addition, if forward sensitivity analysis is turned on, the main module will integrate the
forward sensitivity equations, simultaneously with the original IVP. The sensitivities variables may
or may not be included in the local error control mechanism of the main integrator. cvodes

provides three different strategies of dealing with the correction stage for the sensitivity variables,
SIMULTANEOUS, STAGGERED, and STAGGERED1 (see §2.2 and §5.2.1). The cvodes package includes an
algorithm for the approximation of the sensitivity equations right hand sides by difference quotients,
but the user has the option of supplying these right hand sides directly.

The adjoint sensitivity module provides the infrastructure needed for the integration backwards
in time of any system of ODEs which depends on the solution of the original IVP, in particular the
adjoint system and any quadratures required in evaluating the gradient of the objective functional.
This module deals with the set-up of the check points, interpolation of the forward solution during
the backward integration, and backward integration of the adjoint equations.

At present, the package includes the following four cvodes linear system modules:

• cvdense: LU factorization and backsolving with dense matrices;

• cvband: LU factorization and backsolving with banded matrices;

• cvdiag: an internally generated diagonal approximation to the Jacobian;

• cvspgmr: scaled preconditioned GMRES method.

This set of linear solver modules is intended to be expanded in the future as new algorithms are
developed.

In the case of the direct cvdense and cvband methods, the package includes an algorithm
for the approximation of the Jacobian by difference quotients, but the user also has the option of
supplying the Jacobian (or an approximation to it) directly. In the case of the iterative cvspgmr

method, the package includes and algorithm for the approximation by difference quotients of the
product between the Jacobian matrix and a vector of appropriate length. Again, the user has the
option of providing a routine for this operation. In the case of cvspgmr, the preconditioning must
be supplied by the user, in two phases: setup (preprocessing of Jacobian data) and solve. While
there is no default choice of preconditioner analogous to the difference quotient approximation

15

cvsdiag.h , cvsdiag.ccvsdense.h , cvsdense.c cvsband.h , cvsband.c cvsspgmr.h , cvsspgmr.c

Adjoint CVODEA Module

cvodea.h , cvodea.c

NV_DATA_S(...)
NV_LENGTH_S(...)
NV_Ith_S(...)

NVECTOR_SERIAL

nvector_serial.h
nvector_serial.c

NV_DATA_P(...)
NV_LOCLENGTH_P(...)

NV_Ith_P(...)
NV_GLOBLENGTH_P(...)

nvector_parallel.h
nvector_parallel.c

NVECTOR_PARALLEL

Main CVODES Integrator

cvodes.h, cvodes.c

DENSE

dense.h, dense.c band.h, band.c

BAND

spgmr.h, spgmr.c

 SPGMR

iterativ.h, iterativ.c

ITERATIVE

Generic NVECTOR module

nvector.h, nvector.c

N_VNew(...){...} , N_VFree(...){...} , ...

 CVDENSE CVBAND CVDIAG CVSPGMR

SUNDIALSTYPES

SUNDIALSMATH

sundialsmath.h, sundialsmath.c

sundialstypes.h

Figure 2: Overall structure diagram of the cvodes package. Modules specific to cvodes are
distinguished by rounded boxes, while generic solver and auxiliary modules are in unrounded boxes.

16

in the direct case, the references [2]-[3], together with the example and demonstration programs
included with cvodes, offer considerable assistance in building preconditioners.

Each cvodes linear solver module consists of five routines, devoted to (1) memory allocation
and initialization, (2) setup of the matrix data involved, (3) solution of the system, (4) solution of
the system in the context of forward sensitivity analysis, and (5) freeing of memory. The setup and
solution phases are separate because the evaluation of Jacobians and preconditioners is done only
periodically during the integration, as required to achieve convergence. The call list within the
central cvodes module to each of the five associated functions is fixed, thus allowing the central
module to be completely independent of the linear system method.

These modules are also decomposed in another way. Each of the modules cvdense, cvband,
and cvspgmr is a set of interface routines built on top of a generic solver module, named dense,
band, and spgmr, respectively. The interfaces deal with the use of these methods in the cvodes

context, whereas the generic solver is independent of the context. While the generic solvers here
were generated with sundials in mind, our intention is that they be usable in other applications
as general-purpose solvers. This separation also allows for any generic solver to be replaced by an
improved version, with no necessity to revise the cvodes package elsewhere.

cvodes also provides two preconditioner modules. The first one, cvbandpre, is intended to
be used with nvector serial and provides a banded difference quotient Jacobian based precon-
ditioner and solver routines for use with cvspgmr. The second preconditioner module, cvbbdpre,
works in conjunction with nvector parallel and generates a preconditioner that is a block-
diagonal matrix with each block being a band matrix.

All state information used by cvodes to solve a given problem is saved in a structure, and a
pointer to that structure is returned to the user. There is no global data in the cvodes package,
and so in this respect it is reentrant. State information specific to the linear solver is saved in
separate structure, a pointer to which resides in the cvodes memory structure. The reentrancy
of cvodes was motivated by the anticipated multicomputer extension, but is also essential in a
uniprocessor setting where two or more problems are solved by intermixed calls to the package from
one user program.

Table 1 below is a complete list of files in the cvodes package and the routines in each file.
Header and source files are described as a single unit.

17

Table 1: List of files in the cvodes package

File(s) Description and Contents

cvodes.h, .c Central cvodes integrator module
CVodeMalloc, CVReInit, CVode, CVodeFree, CVodeDky,
CVodeSensMalloc, CVSensReInit, CVodeSensExtract,
CVodeSensDkyAll, CVodeSensDky, CVodeMemExtract,
CVSensRhsDQ, CVSensRhs1DQ

cvodea.h, .c Adjoint sensitivity cvodes module
CVadjMalloc, CVodeF,
CVDenseB, CVBandB, CVBandPreAllocB, CVSpgmrB
CVodeMallocB, CVodeB,
CVadjFree, CVadjGetY, CVadjCheckPointsList

cvsdense.h, .c cvodes dense linear solver cvdense

CVDense, CVReInitDense, CVDenseDQJac

cvsband.h, .c cvodes band linear solver cvband

CVBand, CVReInitBand, CVBandDQJac

cvsdiag.h, .c cvodes diagonal linear solver cvdiag

CVDiag

cvsspgmr.h, .c cvodes GMRES linear solver cvspgmr

CVSpgmr, CVReInitSpgmr, CVSpgmrDQJtimes

cvsbandpre.h, .c Band preconditioner module cvbandpre

CVBandPreAlloc, CVReInitBandPre, CVBandPreFree
CVBandPrecond, CVBandPSolve

cvsbbdpre.h, .c Band-block-diagonal preconditioner module cvbbdpre

CVBBDAlloc, CVReInitBBD, CVBBDFree
CVBBDPrecon, CVBBDPSol

18

4 Using cvodes for IVP Solution

This section is concerned with the use of cvodes for the integration of IVPs. The following
subsections treat the header files, the layout of the user’s main program, description of the cvodes

user-callable routines, and user-supplied functions or routines. The listings of the sample programs
in §7 may also be helpful. Those codes are intended to serve as templates and are included in the
cvodes package.

The user should be aware that not all linear solver modules are compatible with all nvector

implementations. For example, nvector parallel is not compatible with the direct dense or
direct band linear solvers since these linear solver modules need to form the system Jacobian.
The following cvodes modules can only be used with nvector serial: cvdense, cvband, and
cvbandpre. The preconditioner module cvbbdpre can only be used with nvector parallel.

4.1 Header Files

The calling program must include several header files so that various macros and data types can
be used. The header files that are always required are:

• sundialstypes.h, which defines the types realtype, integertype, booleantype and con-
stants FALSE and TRUE;

• cvodes.h, the header file for cvodes, which defines the several types and various constants,
and includes function prototypes.

The calling program must also include an nvector implementation header file (see §11 for details).
For the two nvector implementations that are included in the cvodes package, the corresponding
header files are:

• nvector serial.h, which defines the serial implementation nvector serial;

• nvector parallel.h, which defines the parallel MPI implementation, nvector parallel.

Note that both these files include in turn the header file nvector.h which defines the abstract
N Vector and M Env types.

Finally, if the user chooses Newton iteration for the solution of the nonlinear systems, then a
linear solver module header file will be required. The header files corresponding to the various
linear solver options in cvodes are:

• cvsdense.h, which is used with the dense direct linear solver in the context of cvodes. This
in turn includes a header file (dense.h) which defines the DenseMat type and corresponding
accessor macros;

• cvsband.h, which is used with the band direct linear solver in the context of cvodes. This
in turn includes a header file (band.h) which defines the BandMat type and corrsponding
accessor macros;

• cvsdiag.h, which is used with a diagonal linear solver in the context of cvodes;

19

• cvsspgmr.h, which is used with the Krylov solver spgmr in the context of cvodes. This in
turn includes a header file (iterativ.h) which enumerates the kind of preconditioning and
the choices for the Gram-Schmidt process.

Other headers may be needed, according as to the choice of preconditioner, etc. In one of the
examples to follow, preconditioning is done with a block-diagonal matrix. For this, the header
smalldense.h is included.

4.2 A Skeleton of the User’s Main Program

A high-level view of the combined user program and cvodes package is shown in Figure 3. The
following is a skeleton of the user’s main program (or calling program) for the integration of an
ODE IVP. Most steps are independent of the nvector implementation used; where this is not
the case, usage specifications are given for the two implementations provided with cvodes: steps
marked with [P] correspond to nvector parallel, while steps marked with [S] correspond to
nvector serial.

1. [P] MPI Init(&argc, &argv); to initialize MPI if used by the user’s program, aside from the
internal use in nvector parallel. Here argc and argv are the command line argument
counter and array received by main.

2. Set the problem dimensions:

• [S] Set N, the problem size N .

• [P] Set Nlocal, the local vector length (the sub-vector length for this processor); N, the
global vector length (the problem size N , and the sum of all the values of Nlocal); and
the active set of processors.

3. Initialize the machine environment variable:

• [S] machEnv = M EnvInit Serial(N);

• [P] machEnv = M EnvInit Parallel(comm, Nlocal, N, &argc, &argv); Here comm

is the MPI communicator, set in one of two ways: If a proper subset of active processors
is to be used, comm must be set by suitable MPI calls. Otherwise, to specify that all
processors are to be used, comm must be MPI COMM WORLD.

4. Set the vector y0 of initial values. Use macros defined by a particular nvector implemen-
tation:

• [S] NV MAKE S(y0, ydata, machEnv);

• [P] NV MAKE P(y0, ydata, machEnv);

if an existing real array ydata contains the initial values of y. Otherwise, make the call y0 =

N VNew(N, machEnv); and load initial values into the real array defined by:

• [S] NV DATA S(y0)

• [P] NV DATA P(y0)

20

menv = M_EnvInit_Serial(...) or M_EnvInit_Parallel(...)

M_EnvFree_Serial(menv) or M_EnvFree_Parallel(menv)

NV_DATA_P(...)
NV_LOCLENGTH_P(...)

NV_Ith_P(...)
NV_GLOBLENGTH_P(...)

NVECTOR_PARALLEL

nvector_parallel.h
nvector_parallel.c

NV_DATA_S(...)
NV_LENGTH_S(...)
NV_Ith_S(...)

NVECTOR_SERIAL

nvector_serial.h
nvector_serial.c

cvsband.h , cvsband.c cvsdiag.h , cvsdiag.c cvsspgmr.h , cvsspgmr.ccvsdense.h , cvsdense.c

User’s Program

main() {

 y = N_VNew(...)

 CVDense or CVBand or CVDiag or CVSpgmr(...)

 CVodeFree(...)

 N_VFree(y)

 CVodeMalloc(N, f, ...)

 for (...) { CVode(..., y, ...) }

}

f(...){...}

Jac(...){...} or

jtimes(...){...} , Precond(...){...} and PSolve(...){...}

CVBand(...){...}

CVBandDQJac(...){...}

 CVBAND

CVDiag(...){...}

 CVDIAG

CVSpgmrDQJtimes(...){...}

CVSpgmr(...){...}

 CVSPGMR

CVDense(...){...}

CVDenseDQJac(...){...}

 CVDENSE

CVodeFree(...){...}

CVode(...){...}

CVodeMalloc(...){...}

Main CVODES Integrator

cvodes.h, cvodes.c

Figure 3: Diagram of the user program and cvodes package for integration of IVP

21

5. Call cvode mem = CVodeMalloc(...); to provide problem specifications, allocate internal
memory for cvodes, provide solution method options and tolerances, and initialize cvodes.
CVodeMalloc returns a pointer to the cvodes memory structure (for details see §4.3.1).

6. If Newton iteration is chosen, initialize the linear solver module with one of the following calls
(for details see §4.3.2):

• [S] ier = CVDense(...);

• [S] ier = CVBand(...);

• ier = CVDiag(...);

• ier = CVSpgmr(...);

7. For each point at which output is desired, call ier = CVode(cvode mem, tout, y, &t,

itask); Set itask to NORMAL to have the integrator overshoot tout and interpolate, or
ONE STEP to take a single step and return. The vector y (which can be the same as the vector
y0 above) will contain y(t).

8. Upon completion of the integration, deallocate memory for the vector y by either calling a
macro defined by the nvector implementation:

• [S] NV DISPOSE S(y);

• [P] NV DISPOSE P(y);

if y was created from ydata, or by making the call N VFree(y); if y was created by a call to
N VNew.

9. CVodeFree(cvode mem); to free the memory allocated for cvodes.

10. Free the machine environment variable:

• [S] M EnvFree Serial(machEnv);

• [P] M EnvFree Parallel(machEnv);

4.3 User-Callable Routines for IVP Solution

4.3.1 cvodes Initialization Routine

The form of the call to CVodeMalloc (step 5) is

cvode_mem = CVodeMalloc(N, f, t0, y0, lmm, iter, itol, &rtol,

atol, f_data, errfp, optIn, iopt, ropt, machEnv);

where N is the number of ODEs in the system, f is the C function to compute f in the ODE, t0 is
the initial value of t and y0 is the initial value of y. f has the form f(N, t, y, ydot, f data)

(for full details see §4.4). The flag lmm is used to select the linear multistep method and may
be one of two possible values: ADAMS or BDF. The type of iteration is selected by replacing iter

with either NEWTON or FUNCTIONAL. The typical choices for (lmm, iter) are (ADAMS, FUNCTIONAL)
for nonstiff problems and (BDF, NEWTON) for stiff problems. The next three parameters are used

22

to set the error control. The flag itol is replaced by either SS or SV, where SS indicates scalar
relative error tolerance and scalar absolute error tolerance, while SV indicates scalar relative error
tolerance and vector absolute error tolerance. The latter choice is important when the absolute
error tolerance needs to be different for each component of the ODE. The arguments &rtol and
atol are pointers to the user’s error tolerances, and f data is a pointer to user-defined space passed
directly to the user’s f function. The file pointer errfp points to the file where error messages
from cvodes are to be written (NULL for stdout). The final argument, machEnv, is a pointer to
machine environment-specific information.

Provision is made for certain optional inputs and optional outputs. Optional inputs communi-
cated in the CVodeMalloc call are placed in the arrays iopt and ropt. These include the maximum
order, the tentative initial stepsize, and the maximum stepsize. Each cvodes linear solver may
or may not have optional inputs, which are passed through the associated initialization call list.
Of the existing four linear solvers, only cvspgmr has optional inputs. In any case, there is a
default available for every optional input. Optional outputs from the central cvodes module are
also communicated through the iopt and ropt arrays which are passed to CVodeMalloc. They
include step and function evaluation counts, current stepsize and order, and workspace lengths.
Optional outputs specific to each linear solver are loaded into iopt and ropt, following those from
the central integrator module. For full details on the optional inputs and outputs, see §4.3.4.

If optIn is FALSE, then cvodes assumes that the user is not providing any optional input, while
if it is TRUE then all optional inputs are examined in iopt and ropt.

If there was a failure, the return value of CVodeMalloc is NULL and an error message is printed.

4.3.2 Linear Solver Specification Routines

As previously explained, Newton iteration requires the solution of linear systems of the form (5).
There are four cvodes linear solvers currently available for this task: cvdense, cvband, cvdiag,
and cvspgmr. The first three are direct solvers and derive their name from the type of approxima-
tion used for the Jacobian J = ∂f/∂y. cvdense, cvband, and cvdiag work with dense, banded,
and diagonal approximations to J , respectively. The fourth cvodes linear solver, cvspgmr, is an
iterative solver. The spgmr in the name indicates that it uses a scaled preconditioned GMRES
method.

To specify a cvodes linear solver, after the call to CVodeMalloc but before any calls to CVode,
the user’s program must call one of the functions CVDense, CVBand, CVDiag, CVSpgmr, as doc-
umented below. The first argument passed to these functions is the cvodes memory pointer
returned by CVodeMalloc. A call to one of these functions links the main cvodes integrator to
a linear solver and allows the user to specify parameters which are specific to a particular solver,
such as the bandwidths in the cvband case.

The use of each of the linear solvers involves certain constants (such as locations of optional
outputs in iopt), and possibly some macros, that are likely to be needed in the user code. These
are available in the corresponding header file associated with the linear solver, as specified below.

In each case except the diagonal approximation case cvdiag, the linear solver module used by
cvodes is actually built on top of a generic linear system solver, which may be of interest in itself.
These generic solvers, denoted dense, band, and spgmr, are described separately in §13.

• Dense linear solver specification

23

In using the cvdense solver with cvodes, the calling program must include the corresponding
header file, with the line

#include "cvsdense.h"

After the call to CVodeMalloc, the user must call the routine CVDense to select the cvdense

solver. The call to this routine has the following form:

ier = CVDense(cvode_mem, djac, jac_data);

Note that the cvdense linear solver may not be compatible with a particular implementa-
tion of the nvector module. Of the two nvector modules provided by sundials, only
nvector serial is compatible, while nvector parallel is not.

The cvdense solver needs a routine to compute a dense approximation to the Jacobian
matrix J(t, y). This routine must be of type CVDenseJacFn, and is communicated through
the CVDense formal parameter djac (see §4.4 for specification details). The user can supply
his/her own dense Jacobian routine, or use the difference quotient routine CVDenseDQJac that
comes with the cvdense solver. To use CVDenseDQJac, the user must pass NULL for the djac
parameter.

The CVDense formal parameter jac data is a pointer that accommodates a user-defined data
structure. The cvdense solver passes the pointer it receives in the CVDense call to its dense
Jacobian function (the djac parameter). This allows the user to create an arbitrary structure
with relevant problem data and access it during the execution of the user-supplied Jacobian
routine, without using global data in the program. The pointer jac data may be identical
to f data, if the latter is passed to CVodeMalloc.

The return value ier of CVDense is

– SUCCESS if the cvdense initialization was successful;

– LMEM FAIL if cvode mem was NULL, if the nvector module is incompatible with cv-

dense, or if there was a memory allocation failure.

The cvdense module provides three optional outputs. One is the number of calls made to the
Jacobian routine. It is placed in iopt[DENSE NJE], where iopt is the array supplied by the
user in the CVodeMalloc call. The other two are the sizes of the real and integer workspaces
used by cvdense, stored in iopt[DENSE LRW] and iopt[DENSE LIW], respectively. In terms
of the problem size N , the actual sizes of these workspaces are 2N 2 realtype words and N
integertype words.

• Banded linear solver specification
In using the cvband solver with cvodes, the calling program must include the corresponding
header file, with the line

#include "cvsband.h"

After the call to CVodeMalloc, the user must call the routine CVBand to select the cvband

solver. The call to this routine has the following form:

24

ier = CVBand(cvode_mem, mupper, mlower, bjac, jac_data);

The upper and lower half-bandwidths of problem Jacobian (or of the approximation of it to
be used in cvodes) are specified in this call through the mupper and mlower parameters.

Note that the cvband linear solver may not be compatible with a particular implementa-
tion of the nvector module. Of the two nvector modules provided by sundials, only
nvector serial is compatible, while nvector parallel is not.

The cvband solver requires a routine to compute a banded approximation to the Jacobian
matrix J(t, y). This routine must be of type CVBandJacFn, and is communicated through
the CVBand formal parameter bjac (see §4.4 for specification details). The user can supply
his/her own banded Jacobian approximation routine, or use the difference quotient routine
CVBandDQJac that comes with the cvband solver. To use the CVBandDQJac, the user must
pass NULL for bjac.

As in the cvdense case, the CVBand formal parameter jac data is a pointer to a user-defined
data structure, which the cvband solver passes to the Jacobian function bjac. This allows
the user to create an arbitrary structure with relevant problem data and access it during the
execution of the user-supplied Jacobian routine, without using global data in the program.
The pointer jac data may be identical to f data, if the latter is passed to CVodeMalloc.

The return value ier of CVBand is

– SUCCESS if the cvband initialization was successful;

– LMEM FAIL: if cvode mem was NULL, if the nvector module is incompatible with cvband,
or if there was a memory allocation failure;

– LIN ILL INPUT if there was an illegal input.

The cvband module provides three optional outputs. One is the number of calls made to the
Jacobian routine. It is placed in iopt[BAND NJE], where iopt is the array supplied by the
user in the CVodeMalloc call. The other two are the sizes of the real and integer workspaces
used by cvband, stored in iopt[BAND LRW] and iopt[BAND LIW], respectively. In terms of
the problem size N , the actual sizes of these workspaces are (roughly) N ∗ (2 mupper + 3
mlower + 2) realtype words and N integertype words.

• Diagonal linear solver specification
In using the cvdiag solver with cvodes, the calling program must include the corresponding
header file, with the line

#include "cvsdiag.h"

After the call to CVodeMalloc, the user must call the routine CVDiag to select the cvdiag

solver. The call to this routine has the following form:

ier = CVDiag(cvode_mem);

25

The cvdiag solver is the simplest of all the current cvodes linear solvers. The CVDiag routine
receives only the cvodes memory pointer returned by CVodeMalloc. The cvdiag solver uses
an approximate diagonal Jacobian formed by way of a difference quotient. The user does not
have the option to supply a routine to compute an approximate diagonal Jacobian.

The return value ier of CVDiag is

– SUCCESS if the cvdiag initialization was successful;

– LMEM FAIL if cvode mem was NULL, or if there was a memory allocation failure.

The cvdiag module provides two optional outputs. These are the sizes of the real and integer
workspaces used by cvdiag, stored in iopt[DIAG LRW] and iopt[DIAG LIW], respectively. In
terms of the problem size N , the actual sizes of these workspaces are 3N realtype words and
no integertype words. The number of approximate diagonal Jacobians formed is equal to
iopt[NSETUPS].

• spgmr linear solver specification

The cvspgmr solver uses a scaled preconditioned GMRES iterative method to solve the linear
system (5).

With this spgmr method, preconditioning can be done on the left only, on the right only, on
both the left and the right, or not at all. For a given preconditioner matrix, the merits of left
vs. right preconditioning are unclear in general, and the user should experiment with both
choices. Performance will differ because the inverse of the left preconditioner is included in the
linear system residual whose norm is being tested in the spgmr algorithm. As a rule, however,
if the preconditioner is the product of two matrices, we recommend that preconditioning be
done either on the left only or the right only, rather than using one factor on each side.

In using the cvspgmr solver with cvodes, the calling program must include two associated
header files, with the lines

#include "iterativ.h"

#include "cvspgmr.h"

After the call to CVodeMalloc, the user must call the routine CVSpgmr to select the cvdiag

solver. This routine has the following form:

ier = CVSpgmr(cvode_mem, pretype, gstype, maxl, delt, Precond,

PSolve, P_data, jtimes, jac_data);

The call to CVSpgmr is used to communicate the type of preconditioning (pretype), the
user’s preconditioner setup routine (precond), the preconditioner solve routine (psolve),
and the type of Gram-Schmidt procedure (gstype). The pretype parameter can be NONE,
LEFT, RIGHT, or BOTH. (These constants are defined in iterativ.h.) If no preconditioning is
desired (pass NONE for pretype), then both precond and psolve are ignored. Otherwise, a
preconditioner solve function psolve is required. Regardless of the type of preconditioning,
a preconditioner setup function precond is not required. The gstype parameter can be
MODIFIED GS or CLASSICAL GS (these constants are also defined in iterativ.h) according

26

to whether the user wants the cvspgmr solver to use modified or classical Gram-Schmidt
orthogonalization.

The call to CVSpgmr is also used to communicate two optional inputs to the cvspgmr solver.
One is maxl, the maximum dimension of the Krylov subspace to be used. The other is delt, a
factor by which the GMRES convergence test constant is reduced from the Newton iteration
test constant. Both of these inputs have defaults, which can be invoked by setting the actual
parameter to zero in the call. The actual default values are 5 for the maximum Krylov
dimension, and .05 for the test constant factor.

The routine CVSpgmr takes in a parameter P data, a pointer to a user-defined data structure,
which the cvspgmr solver passes to the preconditioner setup and solve functions precond

and psolve. This allows the user to create an arbitrary structure with relevant problem data
and access it during the execution of the user-supplied preconditioner routines without using
global data in the program. The pointer P data may be identical to f data, if the latter is
passed to CVodeMalloc.

If any type of preconditioning is to be done within the spgmr method, then the user must
supply a preconditioner solve routine psolve (see §4.4). The evaluation and preprocessing
of any Jacobian-related data needed by the user’s preconditioner solve routine is done in the
optional user-supplied routine precond (see §4.4).
The cvspgmr solver requires a routine to compute an approximation to the product between
the Jacobian matrix J(t, y) and a vector v. This routine must be of type CVSpgmrJtimesFn,
and is communicated through the CVSpgmr formal parameter jtimes (see §4.4 for specification
details). The user can supply his/her own Jacobian times vector approximation routine, or
use the difference quotient routine CVSpgmrDQJtimes that comes with the cvspgmr solver.
To use the CVSpgmrDQJtimes, the user must pass NULL for jtimes.

As in the cvdense and cvband cases, the CVSpgmr formal parameter jac data is a pointer
to a user-defined data structure, which the cvspgmr solver passes to the Jacobian times
vector function jtimes. This allows the user to create an arbitrary structure with relevant
problem data and access it during the execution of the user-supplied Jacobian times vector
routine, without using global data in the program. The pointer jac data may be identical
to f data, if the latter is passed to CVodeMalloc.

The return value ier of CVSpgmr is

– SUCCESS if the cvspgmr initialization was successful;

– LMEM FAIL if cvode mem was NULL, or if there was a memory allocation failure;

– LIN ILL INPUT if there was an illegal input.

The cvspgmr solver provides six optional outputs. The total number of calls to precond is
given in iopt[SPGMR NPE], and the number of calls to psolve is in iopt[SPGMR NPS]. The
number of linear iterations is in iopt[SPGMR NLI], and the number of linear convergence fail-
ures is in iopt[SPGMR NCFL]. The sizes of the real and integer workspaces used by cvspgmr

are stored in iopt[SPGMR LRW] and iopt[SPGMR LIW], respectively. In terms of the problem
size N and the maximum Krylov dimension `max, the actual sizes of these workspaces are
N ∗ (`max + 5) + `max ∗ (`max + 4) + 1 realtype words and no integertype words.

27

For users interested in the generic spgmr solver used by cvspgmr, a note of caution is in
order: the routines in spgmr have arguments l max, delta, psolve, P data, which are not
the same as the CVSpgmr arguments maxl, delt, psolve, P data, although the names are the
same or very similar. The arguments pretype and gstype are identical in meaning in both
contexts. For more on the generic spgmr solver, see §13.3.

4.3.3 cvodes Solver Routine

The call to the CVode function itself has the form

ier = CVode(cvode_mem, tout, y, &t, itask);

In addition to the cvodes memory pointer cvode mem, it specifies only two inputs: (1) a flag itask
showing whether the integration is to be done in the “normal mode” or in the “one-step mode”
and (2) a value, tout, of the independent variable t at which a computed solution is desired. In the
normal mode, the integration proceeds in steps (with stepsizes determined internally) up to and
past tout, and CVode interpolates y at t =tout. In the one-step mode, CVode takes only one step
in the desired direction and returns to the calling program. In the one-step mode, tout is required
on the first call only, to get the direction and rough scale of the independent variable. On return,
CVode returns a vector y and a corresponding independent variable value t =*t, such that y is the
computed value of y(t). In the normal mode, with no failures, *t will be equal to tout.

Note that the vector y can be the same as the y0 vector of initial conditions that was passed
to CVodeMalloc.

The return value ier for CVode will be one of the following:

• SUCCESS=0: CVode succeeded;

• TSTOP RETURN=1: CVode succeeded by reaching the stopping point specified through the
optional inputs iopt[ISTOP] and ropt[TSTOP] (see §4.3.4);

• CVODE NO MEM: The cvode mem argument was NULL;

• ILL INPUT: One of the inputs to CVode is illegal. This includes the situation when a com-
ponent of the error weight vectors becomes negative during internal time-stepping. The
ILL INPUT flag will also be returned if the linear solver routine initialization (called by the
user after calling CVodeMalloc) failed to set one of the linear solver-related fields in cvode mem

or if the linear solver’s initialization routine failed. In any case, the user should see the printed
error message for more details;

• TOO MUCH WORK: The solver took mxstep internal steps but could not reach tout. The default
value for mxstep is MXSTEP DEFAULT = 500;

• TOO MUCH ACC: The solver could not satisfy the accuracy demanded by the user for some
internal step;

• ERR FAILURE: Error test failures occurred too many times (MXNEF = 7) during one internal
time step or occurred with |h| = hmin;

• CONV FAILURE: Convergence test failures occurred too many times (MXNCF = 10) during one
internal time step or occurred with |h| = hmin;

28

• SETUP FAILURE: The linear solver’s setup routine failed in an unrecoverable manner;

• SOLVE FAILURE: The linear solver’s solve routine failed in an unrecoverable manner.

All failure return values are negative and therefore a test ier < 0 will trap all CVode failures.

4.3.4 Optional Input/Output

In order to change some of the cvodes constants (such as the maximum method order) or if
additional diagnostic output values are desired, tthe user should declare two arrays for optional
input and output, an iopt array for optional integer input and output and an ropt array for
optional real input and output. The size of both these arrays should be OPT SIZE. So the user’s
declarations should look like:

long int iopt[OPT_SIZE];

realtype ropt[OPT_SIZE];

Tables 2 and 3 contain detailed descriptions of the optional integer and real input-output arrays,
respectively. Only locations corresponding to the main cvodes solver are given in these tables.
Locations beyond CVODE IOPT SIZE and CVODE ROPT SIZE in iopt and ropt, respectively, are used
by the linear solvers and are described in §4.3.2.

Default values of the optional inputs are obtained by setting the corresponding entry to 0. If
FALSE is passed for optIn in the call to CVodeMalloc, no optional input is examined. Note also
that when computing forward sensitivities, cvodes loads some additional optional output entries
in iopt. These are described in §5.2.3.

4.3.5 Interpolated Output Routines

An optionally callable function CVodeDky is available to obtain additional output values. This
function must be called after a successful return from CVode and provides interpolated values of y
or its derivatives, up to the current order of the integration method, interpolated to any value of t
in the last internal step taken by cvodes.

The call to the CVodeDky function has the form

ier = CVodeDky(cvode_mem, t, k, dky);

and computes the k-th derivative of the y function at time t, i.e. d(k)y/dt(k)(t), where tn − hu ≤ t

≤ tn, tn denotes the current internal time reached, and hu is the last internal step size successfully
used by the solver. The user may request k = 0, 1, ..., qu, where qu is the current order. The
derivative vector is returned in dky. This vector must be allocated by the caller. The first argument
cvode mem is the pointer to the cvodes memory returned by CVodeMalloc.

Note that it is only legal to call the function CVodeDky after a successful return from CVode.
The return value ier for CVodeDky is

• OKAY if CVodeDky succeeded;

• BAD K if k is not in the range 0, 1, ..., qu;

• BAD T if t is not in the interval [tn − hu, tn];

29

Table 2: Description of the optional integer input-output array iopt

Index I/O Default value Description

MAXORD I 12 (ADAMS) Maximum lmm order to be used by the solver.
5 (BDF)

MXSTEP I 500 Maximum number of internal steps to be
taken by the solver in its attempt to reach
tout.

MXHNIL I 10 Maximum number of warning messages issued
by the solver that t + h == t on the next
internal step. A value of -1 means no such
messages are issued.

SLDET I 0 Flag to turn on/off stability limit detection (1
= on, 0 = off). When BDF is used and order
is 3 or greater, CVsldet is called to detect
stability limit. If limit is detected, the order
is reduced.

ISTOP I 0 Flag to turn on/off testing for tstop (1=on,
0=off). When on, cvodes uses ropt[TSTOP]
as the value tstop of the independent variable
past which the solution is not to proceed.

NST O Cumulative number of internal steps taken by
the solver (total so far).

NFE O Number of calls to the user’s f function.

NSETUPS O Number of calls made to the linear solver’s
setup routine.

NNI O Number of nonlinear (FUNCTIONAL or NEWTON
iterations performed.

NCFN O Number of nonlinear convergence failures that
have occurred.

NETF O Number of local error test failures that have
occurred.

QU O Order used during the last internal step.

QCUR O Order to be used on the next internal step.

LENRW O Size of required cvodes internal real work
space, in realtype words.

LENIW O Size of required cvodes internal integer work
space, in integertype words.

NOR O Number of order reductions due to stability
limit detection.

30

Table 3: Description of the optional real input-output array ropt

Index I/O Default value Description

H0 I computed Initial step size.

HMAX I ∞ Maximum absolute value of step size allowed.
Note: If optIn=TRUE, the value of ropt[HMAX]
is examined on every call to CVode, and so can
be changed between calls.

HMIN I 0.0 Minimum absolute value of step size allowed.

TSTOP I – The independent variable value past which
the solution is not to proceed. Testing for
this condition must be turned on through
iopt[ISTOP].

H0U O Actual initial step size used.

HU O Step size for the last internal step.

HCUR O Step size to be attempted on the next internal
step.

TCUR O Current internal time reached by the solver.

TOLSF O A suggested factor by which the user’s tol-
erances should be scaled when too much ac-
curacy has been requested for some internal
step.

• BAD DKY if the dky argument was NULL;

• DKY NO MEM if the cvode mem argument was NULL.

4.3.6 cvodes Reinitialization Routine

The function CVReInit reinitializes the main cvodes solver for the solution of a problem, where
a prior call to CVodeMalloc has been made with the same problem size N. CVReInit performs the
same input checking and initializations that CVodeMalloc does (except for N), but does no memory
allocation, assuming that the existing internal memory is sufficient for the new problem.

The use of CVReInit requires that the maximum method order, maxord, is no larger for the
new problem than for the problem specified in the last call to CVodeMalloc. This condition is
automatically fulfilled if the multistep method parameter lmm is unchanged (or changed from ADAMS

to BDF) and the default value for maxord is specified.
If iter = NEWTON, then following the call to CVReInit, a call to the linear solver specification

routine is necessary if a different linear solver is chosen, but may not be otherwise. If the same
linear solver is chosen, and there are no changes in the input parameters to the specification routine,
then no call to that routine is needed. If there are changes in parameters, but they do not increase
the linear solver memory size, then a call to the corresponding CVReInit<linsol> routine must
made to communicate the new parameters (see §4.3.7); in that case the linear solver memory is
reused. If the parameter changes do increase the linear solver memory size, then the main linear
solver specification routine must be called (§4.3.2).

31

The call to the CVReInit function has the form

ier = CVReInit(cvode_mem, f, t0, y0, lmm, iter, itol, &rtol,

atol, f_data, errfp, optIn, iopt, ropt, machEnv);

Its first argument, cvode mem is the pointer to the cvodes memory returned by CVodeMalloc. All
the remaining arguments to CVReInit have names and meanings identical to those of CVodeMalloc.
Note that the problem size N is not passed as an argument to CVReInit, as that is assumed to be
unchanged since the CVodeMalloc call.

The return value ier of CVReInit is equal to:

• SUCCESS=0 if there were no errors;

• CVREI NO MEM if cvode mem was NULL;

• CVREI ILL INPUT if an input argument was illegal (including an attempt to increase maxord).

In case of an error return, an error message is also printed.
Finally, note that the reported workspace sizes iopt[LENRW] and iopt[LENIW] are left un-

changed from the values computed by CVodeMalloc, and so may be larger than would be computed
for the new problem.

4.3.7 Linear Solver Reinitialization Routines

Linear solver reinitialization routines reset the link between the main cvodes integrator and the
linear solver module. Such a routine must be called after a call to CVReInit to solve another
problem of the same size if there is a change in some of the linear solver parameters (such as the
Jacobian data approximation routine or the user-defined data structure). Reinitialization routines
exist for all but the cvdiag linear solver.

• Dense linear solver reinitialization
A call to the CVReInitDense function resets the link between the main cvodes integrator
and the cvdense linear solver. After solving one problem using cvdense, call CVReInit and
then CVReInitDense to solve another problem of the same size, if there is a change in the
CVDense parameters djac or jac data. If there is no change in parameters, it is not necessary
to call either CVReInitDense or CVDense for the new problem.

The call to the cvdense reinitialization routine has the following form:

ier = CVReInitDense(cvode_mem, djac, jac_data);

All arguments to CVReInitDense have the same names and meanings as those of CVDense.
The cvode mem argument must be identical to its value in the previous CVDense call.

The return values of CVReInitDense are:

– SUCCESS if successful;

– LMEM FAIL if the cvode mem argument is NULL.

32

Note that CVReInitDense performs the same tests for a compatible nvector module as
CVDense.

• Banded linear solver reinitialization
A call to the CVReInitBand function resets the link between the main cvodes integrator
and the cvband linear solver. After solving one problem using cvband, call CVReInit and
then CVReInitBand to solve another problem of the same size, if there is a change in the
CVBand parameters bjac or jac data, but no change in mupper or mlower. If there is a
change in mupper or mlower, then CVBand must be called again, and the linear solver memory
will be reallocated. If there is no change in parameters, it is not necessary to call either
CVReInitBand or CVBand for the new problem.

The call to the cvband reinitialization routine has the following form:

ier = CVReInitBand(cvode_mem, mupper, mlower, bjac, jac_data);

All arguments to CVReInitBand have the same names and meanings as those of CVBand. The
cvode mem argument must be identical to its value in the previous CVBand call.

The return values of CVReInitBand are:

– SUCCESS if successful;

– LMEM FAIL if the cvode mem argument is NULL;

– LIN ILL INPUT if there was an illegal input.

Note that CVReInitBand performs the same tests for a compatible nvector module as
CVBand.

• spgmr linear solver reinitialization

A call to the CVReInitSpgmr function resets the link between the main cvodes integrator
and the cvspgmr linear solver. After solving one problem using cvspgmr, call CVReInit
and then CVReInitSpgmr to solve another problem of the same size, if there is a change
in the CVSpgmr parameters pretype, gstype, delt, precond, psolve, P data, jtimes, or
jac data, but not in maxl. If there is a change in maxl, then CVSpgmr must be called again,
and the linear solver memory will be reallocated. If there is no change in parameters, it is
not necessary to call either CVReInitSpgmr or CVSpgmr for the new problem.

The call to the cvspgmr reinitialization routine has the following form:

ier = CVReInitSpgmr(cvode_mem, pretype, gstype, maxl, delt, Precond,

PSolve, P_data, jtimes, jac_data);

All arguments to CVReInitSpgmr have the same names and meanings as those of CVSpgmr.
The cvode mem argument must be identical to its value in the previous CVSpgmr call.

The return values of CVReInitSpgmr are:

– SUCCESS if successful;

– LMEM FAIL if the cvode mem argument is NULL;

– LIN ILL INPUT if there was an illegal input.

33

4.4 User-Supplied Routines for IVP Solution

The user-supplied routines consist of one function defining the ODE, (optionally) a function that
provides Jacobian related information for the linear solver (if Newton iteration is chosen), and
(optionally) one or two functions that define the preconditioner for use in the spgmr algorithm.

• ODE right hand side
The user must provide a function of type RhsFn defined by

typedef void (*RhsFn)(integertype N, realtype t, N_Vector y,

N_Vector ydot, void *f_data);

to compute the right hand side of the ODE system.

This function takes as input the problem size N, the independent variable value t, and the
dependent variable vector y. It must store the result of f(t, y) in the vector ydot. The y

and ydot arguments are of type N Vector. Allocation of memory for ydot is handled within
cvodes. The f data parameter is the same as the f data parameter passed by the user to
the CVodeMalloc routine. This user-supplied pointer is passed to the user’s f function every
time it is called. A RhsFn function type does not have a return value.

• Jacobian information (direct method with dense Jacobian)
If the direct linear solver with dense treatment of the Jacobian is used (i.e. CVDense is called
in step 6 of §4.2), the user may provide a function of type CVDenseJacFn defined by

typedef void (*CVDenseJacFn)(integertype N, DenseMat J, RhsFn f,

void *f_data, realtype t, N_Vector y,

N_Vector fy, N_Vector ewt, realtype h,

realtype uround, void *jac_data,

long int *nfePtr, N_Vector vtemp1,

N_Vector vtemp2, N_Vector vtemp3);

to compute the dense Jacobian J = ∂f/∂y (or an approximation to it).

A user-supplied dense Jacobian routine must load the N by N dense matrix J with an ap-
proximation to the Jacobian matrix J at the point (t,y). Only nonzero elements need to be
loaded into J because J is set to the zero matrix before the call to the Jacobian routine. The
type of J is DenseMat. The accessor macros DENSE ELEM and DENSE COL allow the user to
read and write dense matrix elements without making explicit references to the underlying
representation of the DenseMat type. DENSE ELEM(A,i,j) references the (i,j)th element of
the dense matrix A (i,j = 0..N-1). This macro is for use in small problems in which efficiency
of access is not a major concern. Thus, in terms of indices m and n running from 1 to N , the
Jacobian element Jm,n can be loaded with the statement DENSE ELEM(A,m-1,n-1) = Jm,n.
Alternatively, DENSE COL(A,j) returns a pointer to the storage for the jth column of A, and
the elements of the jth column are then accessed via ordinary array indexing. Thus Jm,n can
be loaded with the statements col n = DENSE COL(J,n-1); col n[m-1] = Jm,n. For large
problems, it is more efficient to use DENSE COL than to use DENSE ELEM. Note that both of

34

these macros number rows and columns starting from 0, not 1. The DenseMat type and the
accessor macros DENSE ELEM and DENSE COL are documented in §13.1.
Typically, a user-supplied Jacobian function djac would be expected to access the arguments
N, t, y, J, f data, and jac data, at most. The remaining arguments would not typically be
accessed, but appear in the call list because they are needed by the function CVDenseDQJac

that computes a difference quotient approximation to J , when the user specifies that option.

• Jacobian information (direct method with banded Jacobian)
If the direct linear solver with banded treatment of the Jacobian is used (i.e. CVBand is called
in step 6 of §4.2), the user may provide a function of type CVBandJacFn defined by

typedef void (*CVBandJacFn)(integertype N, integertype mupper,

integertype mlower, BandMat J, RhsFn f,

void *f_data, realtype t, N_Vector y,

N_Vector fy, N_Vector ewt, realtype h,

realtype uround, void *jac_data,

long int *nfePtr, N_Vector vtemp1,

N_Vector vtemp2, N_Vector vtemp3);

to generate the banded Jacobian J = ∂f/∂y (or a banded approximation to it).

A user-supplied band Jacobian routine must load the band matrix J of type BandMat with the
elements of the Jacobian J(t, y) at the point (t,y). Only nonzero elements need to be loaded
into J because J is preset to zero before the call to the Jacobian routine. The accessor macros
BAND ELEM, BAND COL, and BAND COL ELEM allow the user to read and write band matrix
elements without making specific references to the underlying representation of the BandMat
type. BAND ELEM(A,i,j) references the (i,j)th element of the band matrix A. This macro is
for use in small problems in which efficiency of access is not a major concern. Thus, in terms
of indices m and n running from 1 to N with (m,n) within the band defined by mupper and
mlower, the Jacobian element Jm,n can be loaded with the statement BAND ELEM(A,m-1,n-1)

= Jm,n. The elements within the band are those with -mupper ≤ m-n ≤ mlower. Alternatively,
BAND COL(A,j) returns a pointer to the diagonal element of the jth column of A, and if we
assign this address to realtype *col j, then the ith element of the jth column is given by
BAND COL ELEM(col j,i,j). Thus for (m,n) within the band,
Jm,n can be loaded by setting col n = BAND COL(J,n-1); BAND COL ELEM(col n,m-1,n-1)

= Jm,n. The elements of the jth column can also be accessed via ordinary array indexing,
but this approach requires knowledge of the underlying storage for a band matrix of type
BandMat. The array col n can be indexed from −mupper to mlower. For large problems,
it is more efficient to use the combination of BAND COL and BAND COL ELEM than to use the
BAND ELEM. As in the dense case, these macros all number rows and columns starting from 0,
not 1. The BandMat type and the accessor macros BAND ELEM, BAND COL, and BAND COL ELEM

are documented in §13.2.
Typically, a user-supplied Jacobian function bjac would be expected to access the arguments
N, mupper, mlower, t, y, J, f data, and jac data, at most. The remaining arguments would

35

not typically be accessed, but appear in the call list because they are needed by the function
CVBandDQJac that computes a difference quotient approximation to J , when the user specifies
that option.

• Jacobian information (spgmr case)

If an iterative spgmr linear solver is selected (CVSpgmr is called in step 6 of §4.2) the user
may provide a function of type CVSpgmrJtimesFn in the form

typedef int (*CVSpgmrJtimesFn)(integertype N, N_Vector v, N_Vector Jv,

RhsFn f, void *f_data, realtype t,

N_Vector y, N_Vector fy,

realtype vnrm, N_Vector ewt, realtype h,

realtype uround, void *jac_data,

long int *nfePtr, N_Vector work);

to compute the product Jv = (∂f/∂y)v (or an approximation to it).

A user-supplied Jacobian-times-vector routine must load the vector Jv with the result of the
product between the Jacobian J(t, y) at the point (t,y) and the vector v of dimension N.

Typically, a user-supplied Jacobian-times-vector function jtimes would be expected to access
the arguments N, v, t, y, Jv, f data, and jac data, at most. The remaining arguments would
not typically be accessed, but appear in the call list because they are needed by the function
CVSpgmrDQJtimes that computes a difference quotient approximation to Jv, when the user
specifies that option.

The value to be returned by the Jacobian times vector routine should be 0 if successful. Any
other return value will result in an unrecoverable error of the spgmr generic solver, in which
case the integration is halted.

• Preconditioning (linear system solution)
If preconditioning is used, then the user must provide a C function to solve the linear system
Pz = r where P may be either a left or a right preconditioner matrix. This function must be
of type CVSpgmrPSolveFn defined by

typedef int (*CVSpgmrPSolveFn)(integertype N, realtype t, N_Vector y,

N_Vector fy, N_Vector vtemp, realtype gamma,

N_Vector ewt, realtype delta, long int *nfePtr,

N_Vector r, int lr, void *P_data, N_Vector z);

Its parameters are as follows:

– N is the length of all vector arguments;

– t is the current value of the independent variable;

– y is the current value of the dependent variable vector;

– fy is the vector f(t, y);

36

– vtemp is a pointer to memory allocated for a vector of length N which can be used for
work space;

– gamma is the scalar appearing in the Newton matrix;

– ewt is the error weight vector (input). See delta below;

– delta is an input tolerance to be use if an iterative method is employed in the solution.
In that case, the residual vector Res = r − Pz of the system should be made less than
delta in weighted l2 norm, i.e.,

√
∑

i(Resi · ewti)2 < delta;

– nfePtr is a pointer to the memory location containing the cvodes problem data nfe

= number of calls to f. The preconditioner solve routine should update this counter by
adding on the number of f calls made in order to carry out the solution, if any. For
example, if the routine calls f a total of W times, then the update is *nfePtr += W;;

– r is the right-hand side vector of the linear system;

– lr is an input flag indicating whether the preconditioner solve routine is to use the left
preconditioner (lr=1) or the right preconditioner (lr=2);

– P data is a pointer to user data - the same as the P data parameter passed to CVSpgmr;

– z is the output vector computed.

The value to be returned by the preconditioner solve function is a flag indicating whether
it was successful. This value should be 0 if successful, positive for a recoverable error (in
which case the step will be retried), negative for an unrecoverable error (in which case the
integration is halted).

• Preconditioning (Jacobian data)
If the user’s preconditioner requires that any Jacobian related data be evaluated or prepro-
cessed, then this needs to be done in a user-supplied C function of type CVSpgmrPrecondFn

as defined by

typedef int (*CVSpgmrPrecondFn)(integertype N, realtype t, N_Vector y,

N_Vector fy, booleantype jok,

booleantype *jcurPtr, realtype gamma,

N_Vector ewt, realtype h, realtype uround,

long int *nfePtr, void *P_data,

N_Vector vtemp1, N_Vector vtemp2,

N_Vector vtemp3);

The operations performed by such a routine might include forming a crude approximate
Jacobian, and performing an LU factorization on the resulting approximation to M = I−γJ .

This routine is not called in advance of every call to the preconditioner solve routine, but
rather is called only as often as needed to achieve convergence in the Newton iteration.

The jok argument provides for the re-use of Jacobian data in the preconditioner solve rou-
tine. When jok == FALSE, Jacobian data should be computed from scratch, but when jok

== TRUE, Jacobian data saved earlier can be retrieved and used to form the preconditioner
matrices (with the current γ = gamma). Each call to the preconditioner setup function is

37

preceded by a call to the RhsFn user routine with the same (t,y) arguments. Thus the
preconditoner setup function can use any auxiliary data that is computed and saved during
the evaluation of the ODE right hand side.

The error weight vector ewt, step size h, and unit roundoff uround are provided for possible
use in approximating Jacobian data, e.g. by difference quotients.

The arguments of a CVSpgmrPrecondFn are as follows:

– N is the length of all vector arguments;

– t is the current value of the independent variable;

– y is the current value of the dependent variable vector, namely the predicted value of
y(t);

– fy is the vector f(t, y);

– jok is an input flag indicating whether Jacobian-related data needs to be recomputed.
jok == FALSE means that Jacobian-related data must be recomputed from scratch. jok
== TRUE means that Jacobian data, if saved from the previous Precond call, can be
reused (with the current value of gamma). A call with jok == TRUE can only occur after
a call with jok == FALSE;

– jcurPtr is a pointer to an output integer flag which is to be set to TRUE if Jacobian data
was recomputed or to FALSE if Jacobian data was not recomputed, but saved data was
reused;

– gamma is the scalar appearing in the Newton matrix;

– ewt is the error weight vector;

– h is a tentative step size in t;

– uround is the machine unit roundoff;

– nfePtr is a pointer to the memory location containing the cvodes problem data nfe

= number of calls to f. The preconditioner solve routine should update this counter by
adding on the number of f calls made in order to carry out the solution, if any. For
example, if the routine calls f a total of W times, then the update is *nfePtr += W;;

– P data is a pointer to user data, the same as the P data parameter passed to CVSpgmr;

– vtemp1, vtemp2, and vtemp3 are pointers to memory allocated for vectors of length N

which can be used by CVSpgmrPrecondFn as temporary storage or work space.

The value to be returned by the preconditioner setup function is a flag indicating whether
it was successful. This value should be 0 if successful, positive for a recoverable error (in
which case the step will be retried), negative for an unrecoverable error (in which case the
integration is halted).

4.5 cvodes Preconditioner Modules

4.5.1 A Serial Banded Preconditioner Module

The efficiency of Krylov iterative methods for the solution of linear systems can be greatly enhanced
through preconditioning. For problems in which the user cannot define a more effective, problem-
specific preconditioner, cvodes provides a banded preconditioner in the module cvbandpre.

38

This preconditioner provides a band matrix preconditioner based on difference quotients of the
ODE right-hand side function f. It generates a band matrix of bandwidth ml +mu +1, where the
number of super-diagonals (mu, the upper bandwidth) and sub-diagonals (ml, the lower bandwidth)
are specified by the user and uses this to form a preconditioner for use with the Krylov linear solver
in cvspgmr. Although this matrix is intended to approximate the Jacobian ∂f/∂y, it may be a
very crude approximation. The true Jacobian need not be banded, or its true bandwith may be
larger than ml+mu+1, as long as the banded approximation generated here is sufficiently accurate
to speed convergence as a preconditioner.

In order to use the cvbandpre module, the user needs not define any additional routines. The
following is a summary of the usage of this module and describes the sequence of calls in the user
main program.

• #include "cvsbandpre.h" for needed function prototypes and for type CVBandPreData;

• #include "nvector serial.h" for the serial nvector module;

• M Env machEnv;

• CVBandPreData bp data;

• machEnv = M EnvInit Serial(N); to initialize the serial machine environment;

• cvode mem = CVodeMalloc(N, f, ...);

• bp data = CVBandPreAlloc(N, f, f data, mu, ml, cvode mem);

where the upper and lower half-bandwidths are mu and ml, respectively; f data is a pointer to
private data; and cvode malloc is the pointer to cvodes memory returned by CVodeMalloc;

• ier = CVSpgmr(cvode mem, pretype, gstype, maxl, delt,

CVBandPrecond, CVBandPSolve, bp data,

jtimes, jac data);

with the pointers cvode mem and bp data returned by the two previous calls, the six spgmr

parameters (pretype, gstype, maxl, delt, jtimes, jac data) and the names of the pre-
conditioner routines (CVBandPrecon, CVBandPSol) supplied with the cvbandpre module;

• ier = CVode(cvode mem, tout, y, &t, itask); to carry out the integration;

• CVBandPreFree(bp data); to free the cvbandpre memory block;

• CVodeFree(cvode mem); to free the cvodes memory block;

• M EnvFree Serial(machEnv); to free the machine environment memory block.

Note that the CVBandPrecond and CVBandPSolve functions are never called by the user explicitly;
they are simply passed to the CVSpgmr function.

39

4.5.2 A Parallel Band-Block-Diagonal Preconditioner Module

A principal reason for using a parallel ODE solver such as cvodes lies in the solution of partial
differential equations (PDEs). Moreover, the use of a Krylov iterative method for the solution
of many such problems is motivated by the nature of the underlying linear system of equations
(5) that must be solved at each time step. The linear algebraic system is large, sparse, and
structured. However, if a Krylov iterative method is to be effective in this setting, then a nontrivial
preconditioner needs to be used. Otherwise, the rate of convergence of the Krylov iterative method
is usually unacceptably slow. Unfortunately, an effective preconditioner tends to be problem-
specific.

However, we have developed one type of preconditioner that treats a rather broad class of PDE-
based problems. It has been successfully used for several realistic, large-scale problems [12] and is
included in a software module within the cvodes package. This module works with the parallel
vector module nvector parallel and generates a preconditioner that is a block-diagonal matrix
with each block being a band matrix. The blocks need not have the same number of super-
and sub-diagonals and these numbers may vary from block to block. This Band-Block-Diagonal
Preconditioner module is called cvbbdpre.

One way to envision these preconditioners is to think of the domain of the computational PDE
problem as being subdivided into M non-overlapping subdomains. Each of these subdomains is
then assigned to one of the M processors to be used to solve the ODE system. The basic idea is to
isolate the preconditioning so that it is local to each processor, and also to use a (possibly cheaper)
approximate right-hand side function. This requires the definition of a new function g(t, y) which
approximates the function f(t, y) in the definition of the ODE system (1). However, the user may
set g = f . Corresponding to the domain decomposition, there is a decomposition of the solution
vector y into M disjoint blocks ym, and a decomposition of g into blocks gm. The block gm depends
on ym and also on components of blocks ym′ associated with neighboring subdomains (so-called
ghost-cell data). Let ȳm denote ym augmented with those other components on which gm depends.
Then we have

g(t, y) = [g1(t, ȳ1), g2(t, ȳ2), . . . , gM (t, ȳM)]T (24)

and each of the blocks gm(t, ȳm) is uncoupled from the others.
The preconditioner associated with this decomposition has the form

P = diag[P1, P2, . . . , PM] (25)

where
Pm ≈ I − γJm (26)

and Jm is a difference quotient approximation to ∂gm/∂ym. This matrix is taken to be banded, with
upper and lower half-bandwidths mudq and mldq defined as the number of non-zero diagonals above
and below the main diagonal, respectively. The difference quotient approximation is computed
using mudq + mldq +2 evaluations of gm, but only a matrix of bandwidth mu + ml +1 is retained.
Neither pair of parameters need be the true half-bandwidths of the Jacobian of the local block of g,
if smaller values provide a more efficient preconditioner. The solution of the complete linear system

Px = b (27)

40

reduces to solving each of the equations

Pmxm = bm (28)

and this is done by banded LU factorization of Pm followed by a banded backsolve.
To use this cvbbdpre module, the user must supply two functions which the module calls to

construct P . These are in addition to the user-supplied right-hand side function f.

• A function gloc(Nlocal,t,ylocal,glocal,f data) must be supplied by the user to com-
pute g(t, y). It loads the realtype array glocal as a function of t and ylocal. Both glocal

and ylocal are of length Nlocal, the local vector length.

• A function cfn(Nlocal,t,y,f data) which must be supplied to perform all inter-processor
communications necessary for the execution of the gloc function, using the input vector y of
type N Vector.

Both functions take as input the same pointer f data as that passed by the user to CVodeMalloc and
passed to the user’s function f, and neither function has a return value. The user is responsible
for providing space (presumably within f data) for components of y that are communicated by
cfn from the other processors, and that are then used by gloc, which is not expected to do any
communication.

The user’s calling program should include the following elements:

• #include "cvsbbdpre.h" for needed function prototypes and for type CVBBDData;

• #include "nvector parallel.h" for the parallel nvector module;

• CVBBDData p data;

• machEnv = M EnvInit Parallel(comm, Nlocal, N, argc, argv);

• y = N VNew(N, machEnv);

• cvode mem = CVodeMaloc(N, f, ...);

• p data = CVBBDAlloc(Nlocal, mudq, mldq, mukeep, mlkeep,

dqrely, gloc, cfn, f data, cvode mem);

where gloc and cfn are names of user-supplied functions; f data is a pointer to private
data; and cvode malloc is the pointer to cvodes memory returned by CVodeMalloc. The
CVBBDAlloc call includes half-bandwiths mudq and mldq to be used in the difference-quotient
calculation of the approximate Jacobian. They need not be the true half-bandwidths of
the Jacobian of the local block of g, when smaller values may provide a greater efficiency.
Also, the half-bandwidths mukeep and mlkeep of the retained banded approximate Jacobian
block may be even smaller, to reduce storage and computation costs further. For all four
half-bandwidths, the values need not be the same on every processor.

• ier = CVSpgmr(cvode mem, pretype, gstype, maxl, delt,

CVBBDPrecon, CVBBDPSol, p data);

with the pointers cvode mem and p data returned by the two previous calls, the four spgmr

parameters (pretype, gstype, maxl, delt) and the names of the preconditioner routines
(CVBBDPrecon, CVBBDPSol) supplied with the cvbbdpre module;

41

• ier = CVode(cvode mem, tout, y, &t, itask); to carry out the integration;

• CVBBDFree(p data); to free the cvbbdpre memory block;

• CVodeFree(cvode mem); to free the cvodes memory block;

• M EnvFree Parallel(machEnv); to free the machine environment memory block.

Three optional outputs associated with this module are available by way of macros. These are:

• CVBBD RPWSIZE(p data) the size of the real workspace (local to the current processor) used
by cvbbdpre.

• CVBBD IPWSIZE(p data) the size of the integer workspace (local to the current processor)
used by cvbbdpre.

• CVBBD NGE(p data) the cumulative number of g evaluations (calls to gloc) so far.

The costs associated with cvbbdpre also include nsetups LU factorizations, nsetups calls to
cfn, and nps banded backsolve calls, where nsetups and nps are optional cvodes outputs.

Similar block-diagonal preconditioners could be considered with different treatment of the blocks
Pm. For example, incomplete LU factorization or an iterative method could be used instead of
banded LU factorization.

42

5 Using cvodes for Forward Sensitivity Analysis

This section describes the use of cvodes to compute solution sensitivities using forward sensitivity
analysis. One of our main guiding principles was to design the cvodes user interface for forward
sensitivity analysis as an extension of that for IVP integration. Assuming a user main program and
user-defined support routines for IVP integration have already been defined, in order to perform
forward sensitivity analysis the user only has to insert a few more calls into the main program
and (optionally) define an additional routine which computes the right hand side of the sensitivity
systems (11). The only departure from this philosophy is due to the RhsFn type definition (§4.4).
Without changing the definition of this type, the only way to pass values of the problem parameters
to the ODE right hand side function is to require the user data structure f data to contain a pointer
to the array of real parameters p.

We begin with a brief overview, in the form of a skeleton user program. Following that are
detailed descriptions of the interface to the various user-callable routines and of the user-supplied
routines that were not already described in §4.

5.1 A Skeleton of the User’s Main Program

The following is a skeleton of the user’s main program (or calling program) as an application of
cvodes. The user program is to have these steps in the order indicated, unless otherwise noted.
For the sake of brevity, we defer many of the details to the later sections. As in §4.2, most steps are
independent of the nvector implementation used; where this is not the case, usage specifications
are given for the two implementations provided with cvodes: steps marked with [P] correspond
to nvector parallel, while steps marked with [S] correspond to nvector serial. Differences
between the user main program in §4.2 and the one below start only at step (8).

1. Include relevant header files. No additional header files need be included for forward sensi-
tivity analysis beyond those for IVP solution (§4.2);

2. [P] If MPI is needed by the user code, call MPI Init(&argc, &argv);

3. Set problem dimensions (excluding sensitivity equations):

[S] set N; [P] set N and Nlocal;

4. Initialize the machine environment block by calling the appropriate nvector routine:

[S] M EnvInit Serial; [P] M EnvInit Parallel;

5. Set the vector y0 of initial values;

6. Call cvode mem = CVodeMalloc() to allocate internal memory for cvodes not related to
forward sensitivity computations and initializes cvodes;

7. If Newton iteration is chosen, initialize the linear solver module by calling the appropriate
initialization routine;

8. Define the sensitivity problem (see §5.2.1 for more details)

43

• Set p, an array of Np real parameters upon which the IVP depends (both through its
right-hand side and initial conditions). Only parameters with respect to which sensitiv-
ities are (potentially) desired need to be included. Also set pbar, an array of Np scaling
factors.

• Attach p to the user data structure f data. For example, f data->p = p;

• Set Ns, the number of parameters with respect to which sensitivities are to be computed.
Ns must not be larger than Np;

• Set plist, an array of Ns integer flags to specify the parameters p with respect to which
solution sensitivities are to be computed.

Note that the names for p, pbar, plist, as well as the field p of f data are arbitrary, but
they must agree with the arguments to CVodeSensMalloc below;

9. Set the Ns vectors yS0[i] of N initial values for sensitivities (for i = 0, . . . , Ns − 1). If an
existing data array ySdata (of type realtype** and pointing to Ns vectors of length N each)
contains the initial values yS0, then use a macro of type NVS MAKE defined by the current
nvector implementation:

• [S] NVS MAKE S(Ns, yS0, ySdata, machEnv);

• [P] NVS MAKE P(Ns, yS0, ySdata, machEnv);

Otherwise, make the call yS0 = N VNew S(Ns,N,machEnv); to create an array of N Vector’s
and load initial values for sensitivities yS0[i] into the array given by:

• [S] NV DATA S(yS0[i])

• [P] NV DATA P(yS0[i])

10. Call ier = CVodeSensMalloc(...); to activate forward sensitivity computations and allo-
cate internal memory for cvodes related to sensitivity calculations (see §5.2.1);

11. Call CVode for each point at which output is desired. The forward sensitivity equations will
be integrated together with the original IVP;

12. After each successful return from CVode, the solution of the original IVP is available in the
y argument of CVode, while the sensitivity solution can be extracted into yS (which can be
the same as yS0) by calling the routine ier = CVodeSensExtract(cvode mem, t, yS); (see
§5.2.2);

13. Upon completion of the integration, deallocate memory for the vector y and the vectors yS. If
yS was created from ysdata, then use the implementation-dependent nvector deallocation
macro:

• [S] NVS DISPOSE S(yS, Ns);

• [P] NVS DISPOSE P(yS, Ns);

If yS was allocated through a call to N VNew S then deallocate it by calling N VFree S(Ns,

yS);

44

14. Before freeing the pointer to the user-defined data block f data, release the array containing
the real parameters p: free(f data->p); free(f data);

15. Free the memory allocated for cvodes by calling CVodeFree(cvode mem);

16. Free the machine environment block by calling the appropriate nvector implementation-
dependent routine;

17. [P] If MPI was initialized by the user main program, call MPI Finalize();.

5.2 User-Callable Routines for Forward Sensitivity Analysis

5.2.1 Forward Sensitivity Initialization Routine

The routine CVodeSensMalloc activates forward sensitivity computations and allocates internal
memory related to sensitivity calculations. The form of the call to this routine is

ier = CVodeSensMalloc(cvode_mem, Ns, ism, p, pbar, plist,

ifS, fS, errcon, rhomax, yS0, rtolS, atolS);

• cvode mem is the pointer to the cvodes memory returned by CVodeMalloc;

• Ns is the number of sensitivities to be computed;

• ism is a flag used to select the sensitivity solution method and can be SIMULTANEOUS,
STAGGERED, or STAGGERED1:

– In the SIMULTANEOUS approach, the state and sensitivity variables are corrected at the
same time. If NEWTON was selected as the nonlinear system solution method, this amounts
to performing a modified Newton iteration on the combined nonlinear system;

– In the STAGGERED approach, the correction step for the sensitivity variables takes place
at the same time for all sensitivity equations, but only after the correction of the state
variables has converged and the state variables have passed the local error test;

– In the STAGGERED1 approach, all corrections are done sequentially, first for the state
variables and then for the sensitivity variables, one parameter at a time. If the sensitivity
variables are not included in the error control, this approach is equivalent to STAGGERED.
Note that the STAGGERED1 approach can be used only if ifS = ONESENS.

• p is a pointer to the array of real problem parameters used to evaluate f(t, y, p). The user
data block f data must include a realtype pointer (e.g. p) that points to p. For example, if
the pointer to the data block has the form typedef struct{..., realtype *p;}*f data;

then f data->p = p; must point to the array in which p[i-1] = pi, for i = 1, . . . , Np;

• pbar is an array of real values that are used to scale the sensitivity absolute error tolerance
vectors. Each pbar[i] must be set to a nonzero constant that is dimensionally consistent
with p[i]. Typically, pbar[i]=p[i] whenever p[i] is nonzero;

45

• plist is an array of Ns nonzero integer flags that serves two functions: it specifies parameter
indeces in {1, . . . , Np} with respect to which sensitivities are to be computed and indicates
whether a given parameter affects the right hand side of the original IVP or only its initial
conditions. More specifically, a positive j = plist[i] indicates that the sensitivity of the
solution with respect to the j-th parameter p[j-1] is to be computed. A negative j =

plist[i] indicates that the sensitivity of the solution with respect to the (-j)-th parameter
p[-j-1] is to be computed and indicates that p[-j-1] does not enter f(t, y, p) thus increasing
the efficiency of the difference quotient approximation routine for sensitivity right hand side
evaluation;

• ifS is the type of sensitivity right hand side. The legal values are ALLSENS or ONESENS. The
ALLSENS type means that right hand sides for all sensitivities are provided simultaneously.
In this case fS (if provided by the user) must be of type SensRhsFn. The ONESENS type
means that fS (which, if provided by the user, must be of type SensRhs1Fn) computes one
sensitivity right hand side at a time. Note that ism = STAGGERED1 requires ifS = ONESENS.
Either value for ifS is valid for ism = SIMULTANEOUS or ism = STAGGERED;

• fS, if not NULL, is a user-provided C function to evaluate the right-hand sides of the sensitivity
equations (11). If a NULL pointer is passed then cvodes uses one the default difference
quotient routines (CVSensRhsDQ or CVSensRhs1DQ, depending on the value ifS) to evaluate
these quantities. For more details, see §5.3;

• errcon is a flag used to specify whether partial or full error control is to be used. If errcon
= FULL then both state variables and sensitivity variables are included in the error tests. If
errcon = PARTIAL then the sensitivity variables are excluded from the error tests. Note that,
in any event, all variables are considered in the convergence tests;

• rhomax is a real scalar used to decide the finite differencing strategy in the case in which resid-
uals of sensitivity equations are to be computed by cvodes (fS = NULL) using the internal
difference quotient routines (see §2.2 for details);

• yS0 is a pointer to an array of Ns vectors of length N containing the initial values of the
sensitivities;

• rtolS is a pointer to the user’s relative error tolerance for sensitivity variables. If a NULL

pointer is passed for rtolS then cvodes uses the same relative tolerance for sensitivity
variables as for the state variables;

• atolS must point to a vector of Ns absolute tolerance values for sensitivity variables (if itol
= SS) or to an array of Ns vectors of sensitivity absolute tolerances (if itol = SV). If a NULL

pointer is passed for atolS, cvodes defaults to using as absolute error tolerance for sensitivity
yS[i] a multiple of the absolute error tolerance for the state variables, with the scale factor
being 1/pbar[j-1], j= |plist[i]|.

Note that, unlike the argument y0 of CVodeMalloc - which could be deallocated by the user before
the call to CVode, the space yS0 is used during the integration of the sensitivity equations and
should therefore not be deallocated until after the last call to CVode.

The return value ier of CVodeSensMalloc is equal to:

46

• SUCCESS=0 if there were no errors;

• SCVM NO MEM if cvode mem was NULL;

• SCVM ILL INPUT if an input argument was illegal;

• SCVM MEM FAIL if a memory request failed.

5.2.2 Forward Sensitivity Extraction Routine

If forward sensitivity computations have been initialized by a call to CVodeSensMalloc, or reini-
tialized by a call to CVSensReInit, then cvodes computes both solution and sensitivities at time
t. However, CVode will still return only the solution y in y. Solution sensitivities can be obtained
through the routine CVodeSensExtract:

ier = CVodeSensExtract(cvode_mem, t, yS);

Its arguments are as follows:

• cvode mem is the pointer to the memory previously allocated by CVodeMalloc.

• t specifies the time at which sensitivity information is requested. The time t must fall within
the interval defined by the last succesful step taken by cvodes.

• yS must be declared of type N Vector S (i.e. a pointer to N Vector). The user can use yS

= yS0. If successful, CVodeSensExtract will load yS with the values of the solution sensi-
tivities at time t. Sensitivity with respect to the i-th sensitivity parameter (i.e. parameter
p[|plist[i]|-1]) can be accessed in the N Vector yS[i].

The return value ier of CVodeSensExtract is equal to:

• SUCCESS=0 if there were no errors;

• DKY NO MEM if cvode mem was NULL;

• DKY NO SENSI if sensitivity computation was not turned on by a call to CVodeSensMalloc;

• BAD T if the time t is not in the allowed range.

In case of an error return, an error message is also printed.

5.2.3 Additional Optional Input/Output

As mentioned in §4.3.4, during forward sensitivity analysis, cvodes stores some additional integer
output values in iopt. These values are described in Table 4.

47

Table 4: Additional optional integer output entries in the array iopt from forward sensitivity
analysis

Index Description

NFSE Number of calls made to the sensitivity right hand side eval-
uation routine.

NNIS Number of Newton iterations performed during sensitivity
corrections (sum over all sensitivities in the STAGGERED1

case).

NCFNS Number of nonlinear convergence failures during the sensitiv-
ity corrections (sum over all sensitivities in the STAGGERED1

case).

NETFS Number of error test failures for sensitivity variables.

5.2.4 Additional Diagnostics Extraction Routine

In the STAGGERED1 approach, the correction and error test phases are done sequentially for each sen-
sitivity parameter. In this case, cvodes collects additional information regarding the performance
of the nonlinear solvers for the each individual sensitivity system, in particular the number of non-
linear iterations and nonlinear solver convergence failures for each sensitivity system. Upon return
from CVode, the user can obtain this information with a call to the function CVodeMemExtract.

The call to CVodeMemExtract has the following form:

ier = CVodememExtract(cvode_mem, n_niS1, n_cfnS1);

The vectors n niS1 and n cfnS1, each of length Ns and type long int * must be allocated by
the user if the corresponding information is desired. Upon a successful return, the return value is
OKAY, and n niS1, if non-NULL, contains the nonlinear iteration counts, while n cfnS1, if non-NULL,
contains the nonlinear solver convergence failure counts. If cvode mem is NULL, CVodememExtract
returns MEXT NO MEM.

5.2.5 Interpolated Sensitivity Output Routines

The two routines described here are available to obtain additional output values for the sensitivity
variables.

The routine CVodeSensDkyAll computes the k-th derivatives of the interpolating polynomials
for each sensitivity variable at time t. This function is called by CVodeSensExtract with k = 0,
but may also be called directly by the user.

ier = CVodeSensDkyAll(cvode_mem, t, k, dkyA)

The arguments cvode mem and t are as above. The argument k specifies the derivative order
and must be 0 ≤ k ≤ q, where q is the order of the LMM used on the last step. If its value is illegal,
the return value is BAD K. The argument dkyA must be declared as a pointer to N Vector (i.e. of
type N Vector S) and the user must allocate space for it. If dkyA or any of its component vectors
is NULL, the return value is BAD DKY.

48

The routine CVodeSensDky computes the k-th derivatives of the interpolating polynomial for the
is-th sensitivity variable at time t. This function is called by CVodeSensDkyAll for all sensitivities,
but may also be called directly by the user.

ier = CVodeSensDky(cvode_mem, t, k, is, dky)

The arguments cvode mem, t, and k are as above. The argument is specifies the sensitivity for
which information is requested and must be 0 ≤ is < Ns. If its value is illegal, the return value is
BAD IS. dkyA must be declared as an N Vector and the user must allocate space for it. If dkyA is
NULL, the return value is BAD DKY.

5.2.6 Forward Sensitivity Reinitialization Routine

The routine CVSensReInit, useful during the solution of a sequence of problems of same size,
reinitializes the sensitivity related internal memory and must follow a call to CVodeSensMalloc

(and maybe a call to CVReInit). The number Ns of sensitivities is assumed to be unchanged since
the call to CVodeSensMalloc.

The call to the CVSensReInit function has the form

ier = CVSensReInit(cvode_mem, ism, p, pbar, plist,

ifS, fS, errcon, rhomax, yS0, rtolS, atolS);

The arguments have names and meanings identical to those of CVodeSensMalloc. Note that the
number of sensitivities Ns is not passed as an argument to CVSensReInit, as that is assumed to be
unchanged since the CVodeSensMalloc call.

The return value ier of CVSensReInit is equal to:

• SUCCESS=0 if there were no errors;

• SCVREI NO MEM if cvode mem was NULL;

• SCVREI NO SENSI if sensitivity computation was not turned on by a call to CVodeSensMalloc;

• SCVREI ILL INPUT if an input argument was illegal;

• SCVREI MEM FAIL if a memory request failed.

In case of an error return, an error message is also printed.
Note that CVSensReInit is not a completely genuine reinitialization routine as it may perform

some memory allocation. This can happen if atolS = NULL is passed to CVSensReInit, in which
case cvodes must allocate and set its own internal absolute tolerances for the sensitivity varaiables,
or if ism = STAGGERED1, in which case some internal counter arrays of length Ns are allocated by
CVSensReInit.

5.3 User-Supplied Routines for Forward Sensitivity Analysis

In addition to the required and optional user-supplied routines described in §4.4, when using cvodes

for forward sensitivity analysis, the user has the option of providing a routine that calculates the
right hand side of the sensitivity equations (11).

49

cvodes provides difference quotient approximation routines for the right hand sides of the
sensitivity equations, CVSensRhsDQ if ifS = ALLSENS and CVSensRhs1DQ if ifS = ONESENS. To
use these routines, the user must pass fS = NULL in the call to CVodeSensMalloc (see §5.2.1).
However, cvodes allows the option for user-defined sensitivity right hand side routines (which also
provides a mechanism for interfacing cvodes to routines generated by automatic differentiation).

Recall that, if sensitivity analysis is to be performed, the user-supplied data structure f data

contains a pointer (e.g., p) that points to the array of real parameters upon which the original IVP
depends.

• Sensitivity equations right hand side (the case ALLSENS)
If the SIMULTANEOUS or STAGGERED approach was selected in the call to CVodeSensMalloc,
the user may provide the right hand sides of the sensitivity equations (11), for all sensitivity
parameters at once, through a function of type SensRhsFn defined by

typedef void (*SensRhsFn) (RhsFn f, integertype Ns, integertype N,

realtype t, N_Vector y, N_Vector ydot,

N_Vector *yS, N_Vector *ySdot,

realtype *p, realtype *pbar, integertype *plist,

void *f_data, N_Vector ewt, N_Vector *ewtS,

realtype *reltol, realtype *reltolS,

realtype uround, realtype rhomax, long int *nfePtr,

N_Vector ytemp, N_Vector ftemp);

In this case, the argument ifS of CVodeSensMalloc must be set to ALLSENS. Note that a
sensitivity right hand side function of type SensRhsFn is not compatible with the STAGGERED1
approach.

A function of type SensRhsFn receives as input the value of the independent variable t, the
ODE solution vector y and its derivative ydot, and sensitivity vectors yS. It must compute
the vectors (∂f/∂y)si(t)+ (∂f/∂pi) are store them in ySdot[i]. There is no return value for
a SensRhsFn.

The complete list of arguments is given below. Typically, a user-supplied sensitivity right
hand side function would be expected to access the arguments Ns, N, t, y, yS, p, plist, and
f data. The remaining arguments would not typically be accessed, but appear in the call list
because they are needed by the difference quotient function CVSensRhsDQ.

– f is a pointer to the user-supplied routine of type RhsFn passed to CVodeMalloc;

– Ns is the number of sensitivity parameters;

– N is the problem dimension;

– t is the value of the independent variable;

– y and ydot are the ODE solution and its derivative;

– yS contains the Ns sensitivity vectors;

– ySdot is the output of SensRhsFn. On exit it must contain the sensitivity right hand
side vectors;

50

– p is the vector of problem parameters;

– pbar is the vector containing scaling factors for p;

– plist is a vector of flags specifying the sensitivity parameters among the problem pa-
rameters;

– f data is a pointer to the user-data space passed to CVodeMalloc;

– ewt contains error weights for the state variables y;

– ewtS is an array of vectors ewtS[i] containing error weights for sensitivity variables
yS[i];

– reltol and reltolS are the relative error tolerances for state and sensitivity variables,
respectively;

– uround is the machine unit roundoff;

– rhomax is the finite difference threshold parameter used by CVSensRhsDQ;

– nfePtr is a pointer to the number of function evaluation calls counter. If any calls to f

are made, the user has the option of accounting for them in the final cvodes statistics;

– ytemp and ftemp are pointers to memory allocated for vectors of length N which can be
used by a SensRhsFn function as temporary storage or work space.

• Sensitivity equations right hand side (the case ONESENS)

Alternatively, the user may provide the sensitivity right hand sides, one sensitivity param-
eter at a time through a function of type SensRhs1Fn. In this case, the argument ifS of
CVodeSensMalloc must be set to ONESENS. Note that a sensitivity right hand side function of
type SensRhs1Fn is compatible with any legal value of the CVodeSensMalloc argument ism,
and is required if ism = STAGGERED1.

The type SensRhs1Fn is defined by

typedef void (*SensRhs1Fn) (RhsFn f, integertype Ns, integertype N,

realtype t, N_Vector y, N_Vector ydot,

integertype iS, N_Vector yS, N_Vector ySdot,

realtype *p, realtype *pbar, integertype *plist,

void *f_data, N_Vector ewt, N_Vector *ewtS,

realtype *reltol, realtype *reltolS,

realtype uround, realtype rhomax, long int *nfePtr,

N_Vector ytemp, N_Vector ftemp);

Except for iS, yS, and ySdot, the arguments are identical to those of SensRhsFn functions. A
function of type SensRhs1Fn receives as an argument iS specifying the sensitivity parameter
for which the sensitivity right hand side vector must be evaluated (0 ≤ iS < Ns). The
argument yS contains the iS-th sensitivity vector and, on return, ySdot must contain the
right hand side of the iS-th sensitivity system.

Typically, a user-supplied sensitivity right hand side function would be expected to access
the arguments iS, Ns, N, t, y, yS, p, plist, and f data. The remaining arguments would not
typically be accessed, but appear in the call list because they are needed by the difference
quotient function CVSensRhs1DQ.

51

6 Using cvodes for Adjoint Sensitivity Analysis

This section describes the use of cvodes to compute sensitivities of derived functions using adjoint
sensitivity analysis. As mentioned before, the adjoint sensitivity module of cvodes provides the
infrastructure for integrating backwards in time any system of ODEs that depends on the solution
of the original IVP, by providing various interfaces to the main cvodes integrator, as well as several
supporting user-callable routines. For this reason, in the following sections we refer to the backward
problem and not to the adjoint problem when discussing details relevant to the ODEs that are
integrated backwards in time. The backward problem can be the adjoint problem (20) or (23),
maybe augmented with some quadrature differential equations.

We begin with a brief overview, in the form of a skeleton user program. Following that are
detailed descriptions of the interface to the various user-callable routines and of the user-supplied
routines that were not already described in §4.

6.1 A Skeleton of the User’s Main Program

The following is a skeleton of the user’s main program as an application of cvodes. The user
program is to have these steps in the order indicated, unless otherwise noted. For the sake of brevity,
we defer many of the details to the later sections. As in §4.2, most steps are independent of the
nvector implementation used; where this is not the case, usage specifications are given for the two
implementations provided with cvodes: steps marked with [P] correspond to nvector parallel,
while steps marked with [S] correspond to nvector serial.

1. Include necessary header files. The header file that is always required is cvodea.h which
defines additional types and constants, and includes function prototypes for the adjoint sen-
sitivity module user-callable routines. The header file cvodes.h need not be included by
the user, as it is included by cvodea.h. In addition, the main program should include an
nvector implementation header file (nvector serial.h or nvector parallel.h for the two
implementations provided with cvodes) and, if Newton iteration was selected, a header file
from the desired linear solver module.

2. [P] If MPI is needed by the user code, call MPI Init(&argc, &argv);

3. Set problem dimensions for the forward problem:

[S] set N; [P] set N and Nlocal;

4. Initialize the machine environment block for the forward problem by calling the appropriate
implementation-dependent nvector routine:

[S] M EnvInit Serial; [P] M EnvInit Parallel;

5. Set the vector y0 of initial values for the forward problem;

6. Call cvode mem = CVodeMalloc() to allocate internal memory for cvodes and initializes
cvodes for the forward problem;

7. If Newton iteration is chosen, initialize the linear solver module for the forward problem, by
calling the appropriate initialization routine;

52

8. Call cvadj mem = CVadjMalloc() to allocate memory for the combined forward-backward
problem (see §6.2.1 for more details). This call requires Nd, the number of steps between two
consecutive check points;

9. Call CVodeF, a wrapper around the cvodes main integration routine CVode, either in NORMAL

mode to the time tout or in ONE STEP mode inside a loop (if intermediate solutions of the
forward problem are desired (see §6.2.2). The final value of tout (or of t), denoted tlast, is
then the endpoint t1;

10. Set problem dimensions for the backward problem:

[S] set NB, the number of variables in the backward problem; [P] set NB and NBlocal;

11. Initialize the machine environment block for the backward problem by calling the appropriate
implementation-dependent nvector routine (typically the same as for the forward problem):

[S] M EnvInit Serial; [P] M EnvInit Parallel;

12. Set the vector yB0 of final values for the backward problem;

13. Call CVodeMallocB, a wrapper around the CVodeMalloc, to allocate internal memory and
initialize cvodes for the backward problem (see §6.2.3);

14. If Newton iteration is chosen, initialize the linear solver module for the backward problem,
by calling the appropriate wrapper around the initialization routines CVDenseB, CVBandB,
CVDiagB, or CVSpgmrB (see §6.2.4). Note that it is not required to use the same linear solver
module for both the forward and the backward problems; for example, the forward problem
could be solved with the cvdense linear solver and the backward problem with cvspgmr;

15. Call CVodeB, a second wrapper around the cvodes main integration routine CVode, to inte-
grate the backward problem from tlast to t0, returning the solution of the backward problem
at t0 into yB (see §6.2.5);

16. Upon completion of the backward integration, call all necessary deallocation routines. These
include calls to NV Free for the vectors y and yB, calls to the appropriate implementation-
dependent nvector free routine for the forward and backward machine environment blocks,
and calls to CVodeFree to free the cvodes memory block for the forward problem and to
CVadjFree (see §6.2.6) to free the memory allocated for the combined problem. Note that
CVadjFree also deallocates the cvodes memory for the backward problem;

17. [P] If MPI was initialized by the user main program, call MPI Finalize();.

The above user interface to the adjoint sensitivity module in cvodes was motivated by the
desire to keep it as close as possible in look and feel to the one for ODE IVP integration. Note
that if steps (10)-(15) are not present, a program with the above structure will have the same
functionality as one described in §4.2 for integration of ODEs, albeit with some overhead due to
the check pointing scheme.

53

6.2 User-Callable Routines for Adjoint Sensitivity Analysis

6.2.1 Adjoint Sensitivity Allocation Routine

The routine CVadjMalloc allocates internal memory for the combined forward-backward integra-
tion, other than the cvodes memory block. Space is allocated for the Nd interpolation data points
and a linked list of check points is initialized. The form of the call to this routine is

cadj_mem = CVadjMalloc(cvode_mem, Nd);

where cvode mem is the cvodes memory block for the forward problem returned by a previous call
to CVodeMalloc and Nd is the number of integration steps between two consecutive check points.
If successful, CVadjMalloc returns a pointer of type void *. The user doesn’t need to access this
memory block but must pass it to other adjoint module user-callable routines. In case of failure
(cvode mem is NULL, Nd is non-positive, or a memory request fails), CVadjMalloc prints an error
message to the standard output stream stdout and returns NULL.

The user must set Nd so that all data needed for interpolation of the forward problem solution
between two check points fits in memory. CVadjMalloc attempts to allocate space for (2Nd+3)
vectors of length N, the dimension of the forward problem.

6.2.2 Forward Integration Routine

The routine CVodeF is very similar to the cvodes routine CVode (see §4.3.3) in that it integrates
the solution of the forward problem and returns the solution in y. At the same time, however,
CVodeF stores check point data every Nd integration steps. CVodeF can be called repeatedly by the
user. The last value of tout (or of t), tlast, will be used as the starting time for the backward
integration.

The call to this routine has the form

ier = CVodeF(cadj_mem, tout, y, &t, itask, &ncheckPtr);

Most of its arguments have names and meanings identical to those of CVode. In addition, CVodeF
takes as first argument the memory pointer cvad mem returned by CVadjMalloc and returns in its
last argument the final number of check points. If an error occured during the memory allocation
of a new check point, CVodeF returns CVODEF MEM FAIL and prints an error message to stdout.
Otherwise, since CVodeF wraps around CVode, its return value ier is the return value of CVode (see
§4.3.3): SUCCESS=0 or TSTOP RETURN=1 for a successful return, or a negative value in case of failure.

Note that, at this time, CVodeF stores check point information into memory only. Future
versions will provide for a safe-guard option of dumping check point data to a temporary file as
needed. The data stored at each check point is basically a snapshot of the cvodes internal memory
block and contains enough information to restart the integration from that time and proceed with
the same stepsize and method order sequence as during the forward integration.

6.2.3 Backward Problem Initialization Routine

The routine CVodeMallocB initializes and allocates memory for the backward problem. It has the
following form

54

ier = CVodeMallocB(cvadj_mem, NB, fB, yB0, lmmB, iterB, itolB, &rtolB,

atolB, f_dataB, errfpB, optInB, ioptB, roptB, machEnvB);

and is essentially a call to CVodeMalloc with some particularization for backward integration. First,
CVodeMallocB takes as an argument cvadj mem, the memory pointer returned by CVadjMalloc.
Secondly, no integration starting time is required, as the backward integration starts with the tlast
value from the last CVodeF call. Finally, the argument fB, the C function to compute the right hand
side of the backward problem, must be of type RhsFnB and has the form fB(NB, t, y, yB, yBdot,

f dataB) (see §6.3 for details). All other arguments are equivalent to those of CVodeMalloc. The
relative and absolute tolerances rtolB and atolB for yB need to be set appropriately; this may
require some experimentation. Data that could help in the selection of appropriate tolerances
includes the time scale of the forward problem (including the actual initial stepsize used, available
in the optional I/O real array at ropt[HOU]), the yB values at t0 after the backward integration
phase, and (if an adjoint problem is integrated backwards in time) the value of the gradient gy at
time t1.

The return value of CVodeMallocB is SUCCESS if there were no errors, CVBM NO MEM if cvadj mem

was NULL, or CVBM MEM FAIL if a memory request failed.

6.2.4 Linear Solver Initialization Routines for Backward Problem

The adjoint sensitivity module in cvodes provides interfaces to the initialization routines of all
supported linear solver modules for the case in which Newton iteration is selected for the solution
of the backward problem. The initialization routines described in §4.3.2 cannot be directly used
since the optional user-defined Jacobian-related routines have different prototypes for the backward
problem than for the forward problem. The initialization routine CVDiag for the diagonal linear
solver can be used directly, since cvdiag does not provide for a user-defined diagonal Jacobian
approximation routine.

• Dense linear solver initialization
In order to use the cvdense solver for the backward problem, after the call to CVodeMallocB,
the calling program must make the call

ier = CVDenseB(cvadj_mem, djacB, jac_dataB);

The argument cvadj mem is a pointer to the memory block returned by CVadjMalloc. The
cvdense solver routine for computing a dense approximation to the Jacobian matrix of
the backward problem must be of type CVDenseJacFnB, and is communicated through the
argument djacB. The user can supply his/her own dense Jacobian routine (see §6.3), or
use the difference quotient routine CVDenseDQJac that comes with the cvdense solver. To
use CVDenseDQJac, the user must pass NULL for the djacB parameter. As with CVDense,
jac dataB is a pointer to a user-defined data structure that the cvdense solver passes to its
Jacobian function and which can be used to store data relevant to the Jacobian computation.

The possible return values ier are identical to those of CVDense (see §4.3.2).

• Banded linear solver initialization
In order to use the cvband solver for the backward problem, after the call to CVodeMallocB,
the calling program must make the call

55

ier = CVBandB(cvadj_mem, mupperB, mlowerB, bjacB, jac_dataB);

The CVBandB argument cvadj mem is a pointer to the memory block returned by CVadjMalloc.
The upper and lower bandwidths of the Jacobian of the backward problem (or its approxima-
tion) are specified in this call through the mupperB and mlowerB parameters. The cvband

solver routine for computing a banded approximation to the Jacobian matrix of the backward
problem must be of type CVBandJacFnB, and is communicated through the argument bjacB.
The user can supply his/her own banded Jacobian routine (see §6.3), or use the difference
quotient routine CVBandDQJac that comes with the cvband solver. To use CVBandDQJac,
the user must pass NULL for the bjacB parameter. As before, jac dataB is a pointer to a
user-defined data structure that the cvband solver passes to its Jacobian function and which
can be used to store data relevant to the Jacobian computation.

The possible return values ier are identical to those of CVBand (see §4.3.2).

• spgmr linear solver initialization

The cvspgmr solver can be linked to cvodes for use during the backward problem solution
by calling the routine CVSpgmrB. The call to this routine has the following form:

ier = CVSpgmrB(cvadj_mem, pretypeB, gstypeB, maxlB, deltB, PrecondB,

PSolveB, P_dataB, jtimesB, jac_dataB);

The first argument, cvadj mem, is a pointer to the memory block returned by CVadjMalloc.
The rest of the arguments are equivalent to those of CVSpgmr (see §4.3.2) with the following
exceptions:

– PrecondB, the optional user-defined preconditioner setup routine, must now have func-
tion type CVSpgmrPrecondFnB;

– PSolveB, the user-defined preconditioner solve routine, must now have function type
CVSpgmrPSolveFnB;

– jtimesB, the optional user-defined Jacobian times vector routine, must now be of type
CVSpgmrJtimesFnB. The user can supply his/her own Jacobian times vector approxi-
mation routine, or use the difference quotient routine CVSpgmrDQJtimes. To use the
CVSpgmrDQJtimes, the user must pass NULL for jtimesB.

For details on the prototypes of these user-defined functions, see §6.3. The possible return
values ier are identical to those of CVSpgmr (see §4.3.2).

6.2.5 Backward Integration Routine

The routine CVodeB performs the integration of the backward problem from the final to the initial
time. It is essentially a wrapper around the cvodes main integration routine CVode and, in the
case in which check points were needed, it evolves the solution of the backward problem through
a sequence of forward-backward integrations between consecutive check points. The first run inte-
grates the original IVP forward in time and stores interpolation data; the second run integrates the
backward problem backward in time and performs Hermite interpolation to provide the solution of
the IVP to the backward problem.

The call to this routine has the form

56

ier = CVodeB(cvadj_mem, yB);

and loads the solution of the backward problem at the initial time into yB.
If CVodeB successfully integrates the backward problem, the return value is TSTOP RETURN=1,

as the TSTOP option is automatically turned on in this phase. If an error occurred, CVodeB prints an
error message indicating whether the error occurred during the forward or the backward integration
phase and returns ier from CVode (see §4.3.3).

6.2.6 Adjoint Sensitivity Deallocation Routine

To free the cvadj mem memory block allocated by CVadjMalloc, the user must call CVadjFree.
The call to this routine has the form

CVadjFree(cvadj_mem);

and it frees check-point-related memory, as well as the cvodes memory block allocated for the
integration of the backward problem. There is no return value for CVadjFree.

6.2.7 Check Point Listing Routine

For debugging purposes, cvodes provides a routine CVadjCheckPointsList which displays partial
information from the linked list of check points generated by CVodeF. The call to this routine has
the form:

CVadjCheckPointsList(cvadj_mem);

For a typical output of CVadjCheckPointsList, see the example section §9.1.

6.3 User-Supplied Routines for Adjoint Sensitivity Analysis

In addition to the required ODE right hand side routine and any optional routines for the forward
problem, when using the adjoint sensitivity module in cvodes, the user must supply one function
defining the backward problem ODE and, optionally, routines to supply Jacobian related informa-
tion (if Newton iteration is chosen) and one or two functions that define the preconditioner (if the
cvspgmr solver is selected) for the backward problem.

Type definitions for all these user-supplied routines are given below.

• ODE right hand side for the backward problem
The user must provide a function of type RhsFnB defined by

typedef void (*RhsFnB)(integertype NB, realtype t, N_Vector y,

N_Vector yB, N_Vector yBdot, void *f_dataB);

to compute the right hand side of the backward problem ODE system. This could be (20) or
(23), possibly with one or more quadrature ODEs appended.

This function takes as input the size NB of the backward problem, the independent variable
value t, and the dependent variable vector yB, as well as the solution of the original IVP y at

57

time t. It must store the backward problem right hand side in the vector yBdot. Allocation
of memory for yBdot is handled within cvodes.

The y, yB, and yBdot arguments are all of type N Vector, but yB and yBdot typically have
different internal representations from y. It is the user’s responsibility to access the vector
data consistently (including the use of the correct accessor macros from each nvector imple-
mentation). For the sake of computational efficiency, the vector kernels in the two nvector

implementations provided with cvodes do not perform any consistency checking for their
N Vector arguments (see §11.1 and §11.2).
The f dataB parameter is the same as the f dataB parameter passed by the user to the
CVodeMallocB routine. This user-supplied pointer is passed to the user’s fB function every
time it is called and can be the same as the f data pointer used for the forward problem. A
RhsFnB function type does not have a return value.

• Jacobian information for the backward problem (direct method with dense Jacobian)
If the direct linear solver with dense treatment of the Jacobian is selected for the backward
problem (i.e. CVDenseB is called in step 14 of §6.1), the user may provide a function of type
CVDenseJacFnB defined by

typedef void (*CVDenseJacFnB)(integertype NB, DenseMat JB, RhsFnB fB,

void *f_dataB, realtype t, N_Vector y,

N_Vector yB, N_Vector fyB, N_Vector ewtB,

realtype hB, realtype uroundB, void *jac_dataB,

long int *nfePtrB, N_Vector vtemp1B,

N_Vector vtemp2B, N_Vector vtemp3B);

to compute the dense Jacobian of the backward problem (or an approximation to it). If the
backward problem is the adjoint of the original IVP then this Jacobian is nothing else than
the transpose of J = ∂f/∂y with a change in sign.

A user-supplied dense Jacobian routine must load the NB by NB dense matrix JB with an
approximation to the Jacobian matrix at the point (t,y,yB), where y is the solution of the
original IVP at time t and yB is the solution of the backward problem at the same time. Only
nonzero elements need to be loaded into JB as this matrix is set to zero before the call to
the Jacobian routine. The type of JB is DenseMat. The user is referred to §4.4 (page 34) for
details regarding accessing a DenseMat object as well as details on the rest of the arguments
of a function of type CVDenseJacFnB.

Typically, a user-supplied Jacobian function djacB would be expected to access the arguments
NB, t, y, yB, JB, f dataB, and jac dataB, at most. The remaining arguments would not
typically be accessed, but appear in the call list because they are needed by the function
CVDenseDQJac that computes a difference quotient dense Jacobian approximation, when the
user specifies that option.

• Jacobian information for the backward problem (direct method with banded Jacobian)
If the direct linear solver with banded treatment of the Jacobian is selected for the backward
problem (i.e. CVBandB is called in step 14 of §6.1), the user may provide a function of type
CVBandJacFnB defined by

58

typedef void (*CVBandJacFnB)(integertype NB, integertype mupperB,

integertype mlowerB, BandMat JB, RhsFnB fB,

void *f_dataB, realtype t, N_Vector y,

N_Vector yB, N_Vector fyB, N_Vector ewtB,

realtype hB, realtype uroundB, void *jac_dataB,

long int *nfePtrB, N_Vector vtemp1B,

N_Vector vtemp2B, N_Vector vtemp3B);

to compute the banded Jacobian of the backward problem (or an approximation to it).

A user-supplied band Jacobian routine must load the band matrix JB of type BandMat with
the elements of the Jacobian at the point (t,y,yB), where y is the solution of the original IVP
at time t and yB is the solution of the backward problem at the same time. Only nonzero
elements need to be loaded into JB because JB is preset to zero before the call to the Jacobian
routine. More details on the accessor macros provided for a BandMat object and on the rest
of the arguments of a function of type CVBandJacFnB are given in §4.4 on page 35.

Typically, a user-supplied Jacobian function bjacB would be expected to access the argu-
ments NB, mupperb, mlowerB, t, y, yB, JB, f dataB, and jac dataB, at most. The remaining
arguments would not typically be accessed, but appear in the call list because they are needed
by the function CVBandDQJac that computes a difference quotient banded Jacobian approxi-
mation, when the user specifies that option.

• Jacobian information for the backward problem (spgmr case)

If an iterative spgmr linear solver is selected (CVSpgmrB is called in step 14 of §6.1) the user
may provide a function of type CVSpgmrJtimesFnB in the form

typedef int (*CVSpgmrJtimesFnB)(integertype NB, N_Vector vB, N_Vector JvB,

RhsFnB fB, void *f_dataB, realtype t,

N_Vector y, N_Vector yB, N_Vector fyB,

realtype vnrmB, N_Vector ewtB, realtype hB,

realtype uroundB, void *jac_dataB,

long int *nfePtrB, N_Vector workB);

to compute the action of the Jacobian on a given vector vB for the backward problem (or an
approximation to it). A user-supplied Jacobian times vector routine must load the vector JvB
with the result of the product between the Jacobian of the backward problem at the point
(t,y, yB) and the vector vB of dimension NB. Here, y is the solution of the original IVP at
time t and yB is the solution of the backward problem at the same time. The rest of the
arguments are equivalent to those of a function of type CVSpgmrJtimesFn (see §4.4 on page
36). If the backward problem is the adjoint of ẏ = f(t, y), then this routine is to compute
−(∂f/∂y)T vB.

The return value of a function of type CVSpgmrJtimesFnB should be 0 if successful or non-zero
if an error was encountered, in which case the integration is halted.

• Preconditioning for the backward problem (linear system solution)

59

If preconditioning is used during integration of the backward problem, then the user must
provide a C function to solve the linear system Pz = r where P may be either a left or a
right preconditioner matrix. This function must be of type CVSpgmrPSolveFnB defined by

typedef int (*CVSpgmrPSolveFnB)(integertype NB, realtype t, N_Vector y,

N_Vector yB, N_Vector fyB,

N_Vector vtempB, realtype gammaB,

N_Vector ewtB, realtype deltaB,

long int *nfePtrB, N_Vector rB,

int lrB, void *P_dataB, N_Vector zB);

The only difference between this function type and CVSpgmrPSolveFn (defined in §4.4 on page
36) is that a function of type CVSpgmrPSolveFnB also receives as an argument y, the solution
of the forward problem at time t.

The return value of a preconditioner solve routine for the backward problem should be 0 if
successful, positive for a recoverable error (in which case the step will be retried), negative
for an unrecoverable error (in which case the integration is halted).

• Preconditioning for the backward problem (Jacobian data)
If the user’s preconditioner requires that any Jacobian related data be evaluated or prepro-
cessed, then this needs to be done in a user-supplied C function of type CVSpgmrPrecondFnB
as defined by

typedef int (*CVSpgmrPrecondFnB)(integertype NB, realtype t, N_Vector y,

N_Vector yB, N_Vector fyB, booleantype jokB,

booleantype *jcurPtrB, realtype gammaB,

N_Vector ewtB, realtype hB, realtype uroundB,

long int *nfePtrB, void *P_dataB,

N_Vector vtemp1B, N_Vector vtemp2B,

N_Vector vtemp3B);

This function type is identical to the type CVSpgmrPrecondFn (§4.4 on page 37) with the
exception of the additional argument y which contains the solution of the forward problem
at time t.

The return value of a preconditioner setup routine for the backward problem should be 0 if
successful, positive for a recoverable error (in which case the step will be retried), negative
for an unrecoverable error (in which case the integration is halted).

6.4 Using the Banded Preconditioner Module for Adjoint Sensitivity Analysis

The adjoint sensitivity module in cvodes offers an interface to the banded preconditioner module
cvbandpre described in section §4.5.1. This preconditioner provides a band matrix preconditioner
based on difference quotients of the backward problem right hand side function fB. It generates
a banded approximation to the Jacobian with mlB sub-diagonals and muB super-diagonals to be
used with the Krylov linear solver in cvspgmr.

60

In order to use the cvbandpre module in the solution of the backward problem, the user need
not define any additional routines. Before the call to CVSpgmrB (step 14 in §6.1), the user must
initialize the cvbandpre module by calling

bp_dataB = CVBandPreAllocB(cvadj_mem, NB, muB, mlB);

where cvadj mem is the pointer to the memory block allocated by CVadjMalloc, NB is the size of
the backward problem, and muB and mlB are the upper and lower half-bandwidths, respectively.
CVBandPreAlloc returns an object of type CVBandPreData which must then be passed to CVSpgmrB
as the P dataB argument:

ier = CVSpgmrB(cvadj_mem, pretypeB, gstypeB, maxlB, deltB,

CVBandPrecondB, CVBandPSolveB, bp_dataB,

jtimesB, jac_dataB);

Here the preconditioner setup and solve routines CVBandPSolveB and CVBandPrecondB are provided
in the interface to the cvbandpre module. They are never called by the user explicitly but are
simply passed as arguments to CVSpgmrB. Although these functions simply call CVBandPSolve and
CVBandPrecond, without any other processing, they need to be defined because they must be of
the correct function types expected by CVSpgmrB. For example, CVBandPSolveB must be of type
CVSpgmrPSolveFnB and thus receives y, the solution of the original IVP, as an argument (which is
consequently ignored as it is not needed by cvbandpre).

61

7 Example Problems for IVP Solution

The cvodes distribution contains, in the sundials/cvodes/examples directory, the following nine
examples for ODE IVP solution:

• cvdx solves a chemical kinetics problem consisting of three rate equations.

This program solves the problem with the BDF method, Newton iteration with the cvdense

linear solver, and a user-supplied Jacobian routine;

• cvbx solves the semi-discrete form of an advection-diffusion equation in 2-D.

This program solves the problem with the BDF method, Newton iteration with the cvband

linear solver, and a user-supplied Jacobian routine;

• cvkx solves the semi-discrete form of a two-species diurnal kinetics advection-diffusion PDE
system in 2-D space.

The problem is solved with the BDF/GMRES method (i.e. using the cvspgmr linear solver)
and the block-diagonal part of the Newton matrix as a left preconditioner. A copy of the
block-diagonal part of the Jacobian is saved and conditionally reused within the preconditioner
setup routine;

• cvkxb solves the same problem as cvkx, with the BDF/GMRES method and a banded pre-
conditioner, generated by difference quotients, using the module cvbandpre. The problem
is solved twice, with left and right preconditioning;

• cvdemd is a demonstration program for cvodes with direct linear solvers.

Two separate problems are solved using both the Adams and BDF linear multistep methods
in combination with functional and Newton iterations.

The first problem is the Van der Pol oscillator for which the Newton iteration cases use the
following types of Jacobian approximations: (1) dense, user-supplied, (2) dense, difference
quotient approximation, (3) diagonal approximation. The second problem is a linear ODE
with a banded lower triangular matrix derived from a 2-D advection PDE. In this case, the
Newton iteration cases use the following types of Jacobian approximation: (1) band, user-
supplied, (2) band, difference quotient approximation, (3) diagonal approximation.

• cvdemk is a demonstration program for cvodes with the Krylov linear solver.

This program solves a stiff ODE system that arises from a system of partial differential
equations. The PDE system is a six-species food web population model, with predator-prey
interaction and diffusion on the unit square in two dimensions.

The ODE system is solved using Newton iteration and the cvspgmr linear solver (scaled
preconditioned GMRES).

The preconditioner matrix used is the product of two matrices: (1) a matrix, only defined
implicitly, based on a fixed number of Gauss-Seidel iterations using the diffusion terms only;
and (2) a block-diagonal matrix based on the partial derivatives of the interaction terms only,
using block-grouping.

62

Four different runs are made for this problem. The product preconditoner is applied on the
left and on the right. In each case, both the modified and classical Gram-Schmidt options
are tested;

• pvnx solves the semi-discrete form of an advection-diffusion equation in 1-D.

This program solves the problem with the option for nonstiff systems, i.e. Adams method
and functional iteration;

• pvkx is the parallel implementation of cvkx;

• pvkxb solves the same problem as pvkx, with the BDF/GMRES method and a block-diagonal
matrix with banded blocks as a preconditioner generated by difference quotients, using the
module cvbbdpre.

The first six are serial examples that use the nvector serial module and the last three are
parallel examples using the nvector parallel module.

The next two sections describe in detail a serial example (cvdx) and a parallel one (pvkx). For
details on the other examples, the reader is directed to the comments in their source files.

7.1 A Serial Sample Problem

As an initial illustration of the use of the cvodes package for the integration of IVP ODEs, the
following is a sample program provided as part of the package. It uses the cvodes dense linear
solver module cvdense and the nvector serial module (which provides a serial implementation
of nvector) in the solution of a small chemical kinetics problem . For the source listed in App.
A.1, we give a rather detailed explanation of the parts of the program and their interaction with
cvodes.

Following the initial comment block, this program has a number of #include lines, which allow
access to useful items in cvodes header files. The sundialstypes.h file provides the definitions of
the types realtype and integertype (see §10 for details). For now, it suffices to read realtype

as double and integertype as int. The cvodes.h file provides prototypes for the three cvodes

functions to be called (excluding the linear solver selection function), and also a number of constants
that are to be used in dimensioning, setting input arguments, testing the return value of CVode,
and accessing the integer optional outputs. The cvsdense.h file provides the prototype for the
CVDense function, and a constant DENSE NJE for accessing optional output specific to cvdense.
The nvector serial.h file is the header file for the serial implementation of the nvector module
and includes definitions of the N Vector type, a macro to access vector components, and prototypes
for the serial implementation specific machine environment memory allocation and freeing functions.
Finally, the dense.h file provides the definition of the dense matrix type DenseMat and a macro for
accessing matrix elements. We have explicitly included dense.h, but this is not necessary because
it is included by cvsdense.h.

This program includes two user-defined accessor macros, Ith and IJth that are useful in writing
the problem functions in a form closely matching the mathematical description of the ODE system,
i.e. with components numbered from 1 instead of from 0. The Ith macro is used to access
components of a vector of type N Vector with a serial implementation. It is defined using the
nvector serial accessor macro NV Ith S which numbers components starting with 0. The IJth

63

macro is used to access elements of a dense matrix of type DenseMat. It is defined using the dense

accessor macro DENSE ELEM which numbers matrix rows and columns starting with 0. The macros
NV Ith S and DENSE ELEM are fully described in §11.1 and §13.1, respectively.

Next, the program includes some problem-specific constants, which are isolated to this early
location to make it easy to change them as needed. The program prologue ends with the prototype
of a private helper function and the two user-supplied functions that are called by cvodes.

The main function begins with some dimensions and type declarations. These make use of the
constant OPT SIZE and the type N Vector. The first line initializes the serial machine environment
by calling the M EnvInit Serial routine implemented by nvector serial (see §11.1). The next
two lines allocate memory for the y and abstol vectors using N VNew with a length argument of
NEQ (= 3). The next several lines load the initial values of the dependendent variable vector into y

and set the absolute tolerance vector abstol using the Ith macro.
The call to CVodeMalloc specifies the BDF integration method with NEWTON iteration. The SV

argument specifies a vector of absolute tolerances, and this is followed by the address of the relative
tolerance reltol and the absolute tolerance vector abstol. The FALSE argument indicates that no
optional inputs are present in iopt or ropt. The two NULL actual parameters in the CVodeMalloc
call are for features that are not used in this example. The first one is passed for the CVodeMalloc
formal parameter f data. This pointer is passed to f every time f is called, and is intended to point
to user problem data that might be needed in f. The second NULL forces cvodes error messages to
be sent to standard output; a file pointer (of type FILE*) may be given in this position otherwise.
The return value of CVodeMalloc is a pointer to a cvodes solver memory block for the problem
and solver options specified by the inputs. In the case of failure, the return value is NULL. This
pointer must be passed in the remaining calls to cvodes functions. See §4.3.1 for full details of
the call to CVodeMalloc.

The call to CVDense with a non-NULL Jacobian function Jac specifies the cvdense linear solver
with an analytic Jacobian supplied by the user-supplied function Jac. The NULL argument is passed
for the CVDense formal parameter jac data. In a role similar to f data, this pointer is passed to
Jac every time Jac is called, and is intended to point to user problem data that might be needed
in Jac. See §4.3.2 for full details of the call to CVDense.

The actual solution of the ODE initial value problem is accomplished in the loop over values of
tout. For each value, the program calls CVode in the NORMAL mode, meaning that the integrator
takes steps until it overshoots tout and then interpolates to t =tout, putting the computed value
of y(tout) into y. The program prints t and y, and tests for a return value other than SUCCESS by
CVode. See §4.3.3 for full details of the call to CVode.

Finally, the main program calls NV Free to free the vectors y and abstol, calls CVodeFree to free
the cvodes memory block, calls M EnvFree Serial to free the serial machine environment memory
block, and prints all of the statistical quantities in the private helper function PrintFinalStats.
See §11.1 for details on M EnvFree Serial.

The function PrintFinalStats used here is actually suitable for general use in connection with
the use of cvodes for any problem with a dense Jacobian. It prints the cumulative number of
steps (nst), the number of f evaluations (nfe), the number of matrix factorizations (nsetups),
the number of Jac evaluations (nje), the number of nonlinear iterations (nni), the number of
nonlinear convergence failures (ncnf), and the number of local error test failures (netf). These
optional outputs are described in §4.3.4, except for nje = iopt[DENSE NJE], which is described in
§4.3.2.

64

The function f is a straightforward expression of the ODEs. It uses the user-defined macro
Ith to extract the components of y and load the components of ydot. See §4.4 for a detailed
specification of f.

The function Jac sets the nonzero elements of the Jacobian as a dense matrix. (Zero elements
need not be set because J is preset to zero.) It uses the user-defined macro IJth to reference the
elements of a dense matrix of type DenseMat. Here the problem size is small, so we need not worry
about the inefficiency of using NV Ith S and DENSE ELEM to do N Vector and DenseMat element
accesses. Note that in this example Jac only accesses the y and J arguments. See §4.4 for a detailed
description of the dense Jac function.

The output generated by cvdx is shown below.

3-species kinetics problem

At t = 4.0000e-01 y = 9.851641e-01 3.386242e-05 1.480205e-02

At t = 4.0000e+00 y = 9.055097e-01 2.240338e-05 9.446793e-02

At t = 4.0000e+01 y = 7.158014e-01 9.185060e-06 2.841895e-01

At t = 4.0000e+02 y = 4.505419e-01 3.223113e-06 5.494549e-01

At t = 4.0000e+03 y = 1.832057e-01 8.942854e-07 8.167934e-01

At t = 4.0000e+04 y = 3.898153e-02 1.621745e-07 9.610183e-01

At t = 4.0000e+05 y = 4.936102e-03 1.984115e-08 9.950639e-01

At t = 4.0000e+06 y = 5.165912e-04 2.067419e-09 9.994834e-01

At t = 4.0000e+07 y = 5.202658e-05 2.081170e-10 9.999480e-01

At t = 4.0000e+08 y = 5.202811e-06 2.081135e-11 9.999948e-01

At t = 4.0000e+09 y = 5.206213e-07 2.082486e-12 9.999995e-01

At t = 4.0000e+10 y = 5.099726e-08 2.039890e-13 9.999999e-01

Final Statistics..

nst = 536 nfe = 789 nsetups = 116 nje = 12

nni = 786 ncfn = 0 netf = 32

7.2 A Parallel Sample Program

As an example of using cvodes with the Krylov linear solver cvspgmr and the parallel MPI
nvector parallel module, we describe a test problem based on a two-dimensional system of
two PDEs involving diurnal kinetics, advection, and diffusion. These equations represent a sim-
plified model for the transport, production, and loss of the oxygen singlet and ozone in the upper
atmosphere. The PDEs can be written as

∂ci

∂t
= Kh

∂2ci

∂x2
+ V

∂ci

∂x
+

∂

∂y
Kv(y)

∂ci

∂y
+Ri(c1, c2, t) (i = 1, 2), (29)

where the superscripts i are used to distinguish the chemical species, and where the reaction terms
are given by

R1(c1, c2, t) = −q1c1c3 − q2c
1c2 + 2q3(t)c

3 + q4(t)c
2

R2(c1, c2, t) = q1c
1c3 − q2c

1c2 − q4(t)c
2

(30)

65

The spatial domain is 0 ≤ x ≤ 20, 30 ≤ y ≤ 50. The constants and parameters for this problem
are as follows: Kh = 4.0 × 10−6, V = 10−3, Kv = 10−8 exp(y/5), q1 = 1.63 × 10−16, q2 =
4.66× 10−16, c3 = 3.7× 1016, and the diurnal rate constants are defined as follows:

qi(t) =

{

exp[−ai/ sinωt], for sinωt > 0

0, for sinωt ≤ 0

where i = 3, 4, ω = π/43200, a3 = 22.62, a4 = 7.601. The time interval of integration is [0, 86400],
representing 24 hours measured in seconds.

Homogeneous Neumann boundary conditions are imposed on each boundary and the initial
conditions are

c1(x, z, 0) = 106α(x)β(y), c2(x, z, 0) = 1012α(x)β(y)

α(x) = 1− (0.1x− 1)2 + (0.1x− 1)4/2

β(y) = 1− (0.1y − 4)2 + (0.1y − 4)4/2

We discretize the PDE system with central differencing, to obtain an ODE system u̇ = f(t, u)
representing (29). For this example, we may think of the processors as being laid out in a rectangle,
and each processor being assigned a subgrid of size MXSUB×MYSUB of the x − y grid. If there are
NPEX processors in the x direction and NPEY processors in the y direction then the overall grid size
is MX×MY with MX=NPEX×MXSUB and MY=NPEY×MYSUB. There are 2×MX×MY equations in this system
of ODEs. To compute f in this setting, the processors pass and receive information as follows. The
solution components for the bottom row of grid points in the current processor are passed to the
processor below it and the solution for the top row of grid points is received from the processor
below the current processor. The solution for the top row of grid points for the current processor
is sent to the processor above the current processor, while the solution for the bottom row of grid
points is received from that processor by the current processor. Similarly the solution for the first
column of grid points is sent from the current processor to the processor to its left and the last
column of grid points is received from that processor by the current processor. The communication
for the solution at the right edge of the processor is similar. If this is the last processor in a
particular direction, then message passing and receiving are bypassed for that direction.

The code listing for this example is given in App. A.2. The purpose of this code is to provide
a more complicated example than Example 1, and to provide a template for a stiff ODE system
arising from a PDE system. The solution method is BDF with Newton iteration and spgmr. The
left preconditioner is the block-diagonal part of the Newton matrix, with 2 × 2 blocks, and the
corresponding diagonal blocks of the Jacobian are saved each time the preconditioner is generated,
for re-use later under certain conditions.

The organization of the pvkx program deserves some comments. The right-hand side routine f
calls two other routines: ucomm, which carries out inter-processor communication; and fcalc which
operates on local data only and contains the actual calculation of f(t, u). The ucomm function
in turn calls three routines which do, respectively, non-blocking receive operations, blocking send
operations, and receive-waiting. All three use MPI, and transmit data from the local u vector into
a local working array uext, an extended copy of u. The fcalc function copies u into uext, so that
the calculation of f(t, u) can be done conveniently by operations on uext only.

Sample output from pvkx follows. The output will vary if the number of processors is changed.
The output is for four processors (in a 2× 2 array) with a 5× 5 subgrid on each processor.

66

2-species diurnal advection-diffusion problem

t = 7.20e+03 no. steps = 219 order = 5 stepsize = 1.59e+02

At bottom left: c1, c2 = 1.047e+04 2.527e+11

At top right: c1, c2 = 1.119e+04 2.700e+11

t = 1.44e+04 no. steps = 251 order = 5 stepsize = 3.77e+02

At bottom left: c1, c2 = 6.659e+06 2.582e+11

At top right: c1, c2 = 7.301e+06 2.833e+11

t = 2.16e+04 no. steps = 277 order = 5 stepsize = 2.75e+02

At bottom left: c1, c2 = 2.665e+07 2.993e+11

At top right: c1, c2 = 2.931e+07 3.313e+11

t = 2.88e+04 no. steps = 317 order = 4 stepsize = 3.89e+02

At bottom left: c1, c2 = 8.702e+06 3.380e+11

At top right: c1, c2 = 9.650e+06 3.751e+11

t = 3.60e+04 no. steps = 354 order = 4 stepsize = 6.82e+01

At bottom left: c1, c2 = 1.404e+04 3.387e+11

At top right: c1, c2 = 1.561e+04 3.765e+11

t = 4.32e+04 no. steps = 418 order = 3 stepsize = 3.80e+02

At bottom left: c1, c2 = -8.138e-07 3.382e+11

At top right: c1, c2 = -1.218e-06 3.804e+11

t = 5.04e+04 no. steps = 439 order = 4 stepsize = 3.81e+02

At bottom left: c1, c2 = 4.720e-15 3.358e+11

At top right: c1, c2 = 6.925e-15 3.864e+11

t = 5.76e+04 no. steps = 453 order = 5 stepsize = 3.47e+02

At bottom left: c1, c2 = -2.056e-15 3.320e+11

At top right: c1, c2 = -3.729e-15 3.909e+11

t = 6.48e+04 no. steps = 465 order = 5 stepsize = 6.29e+02

At bottom left: c1, c2 = 5.079e-13 3.313e+11

At top right: c1, c2 = 9.699e-13 3.963e+11

t = 7.20e+04 no. steps = 476 order = 5 stepsize = 6.29e+02

At bottom left: c1, c2 = 1.955e-14 3.330e+11

At top right: c1, c2 = 3.117e-14 4.039e+11

t = 7.92e+04 no. steps = 488 order = 5 stepsize = 6.29e+02

At bottom left: c1, c2 = -1.854e-16 3.334e+11

At top right: c1, c2 = -3.388e-16 4.120e+11

t = 8.64e+04 no. steps = 499 order = 5 stepsize = 6.29e+02

At bottom left: c1, c2 = -1.189e-18 3.352e+11

At top right: c1, c2 = -2.480e-18 4.163e+11

67

Final Statistics..

lenrw = 2000 leniw = 0

llrw = 2046 lliw = 0

nst = 499 nfe = 1293

nni = 649 nli = 641

nsetups = 87 netf = 33

npe = 9 nps = 1226

ncfn = 0 ncfl = 0

68

8 Example Problems for Forward Sensitivity Analysis

The cvodes distribution contains, in the sundials/cvodes/fwd examples directory, the following
five examples for forward sensitivity analysis:

• cvfnx solves the semi-discrete form of an advection-diffusion equation in 1-D.

cvodes computes both its solution and solution sensitivities with respect to the advection and
diffusion coefficients. This program solves the problem with the option for nonstiff systems,
i.e. Adams method and functional iteration;

• cvfdx solves a chemical kinetics problem consisting of three rate equations.

cvodes computes both its solution and solution sensitivities with respect to the three reaction
rate constants appearing in the model. This program solves the problem with the BDF
method, Newton iteration with the cvdense linear solver, and a user-supplied Jacobian
routine;

• cvfkx solves the semi-discrete form of a two-species diurnal kinetics advection-diffusion PDE
system in 2-D space.

cvodes computes both its solution and solution sensitivities with respect to two parameters
affecting the kinetic rate terms. The problem is solved with the BDF/GMRES method (i.e.
using the cvspgmr linear solver) and the block-diagonal part of the Newton matrix as a left
preconditioner;

• pvfnx is the parallel version of cvfnx;

• pvfkx is the parallel version of cvfkx.

The first three are serial examples that use the nvector serial module and the last two are
parallel examples using the nvector parallel module. For all the above examples, any of three
sensitivity methods (SIMULTANEOUS, STAGGERED, and STAGGERED1) can be used and sensitivities
may be included in the error test or not (error control set on FULL or PARTIAL, respectively).

The next two sections describe in detail a serial example (cvfdx) and a parallel one (pvfkx).
For details on the other examples, the reader is directed to the comments in their source files.

8.1 A Serial Sample Problem

As a first example of using cvodes for forward sensitivity analysis, we provide a modification of
the chemical kinetics problem described in §7.1 which computes, in addition to the solution of the
IVP, sensitivities of the solution with respect to the three reaction rates involved in the model. The
ODEs are written as:

ẏ1 = −p1y1 + p2y2y3

ẏ2 = p1y1 − p2y2y3 − p3y
2
2

ẏ3 = p3y
2
2 ,

(31)

69

with initial conditions at t0 = 0, y1 = 1 and y2 = y3 = 0. The nominal values of the reaction rate
constants are p1 = 0.04, p2 = 104, and p3 = 3 ·107. The sensitivity systems that are solved together
with (31) are

ṡi =





−p1 p2y3 p2y2

p1 −p2y3 − 2p3y2 −p2y2

0 2p3y2 0



 si +
∂f

∂pi
, si(t0) =





0
0
0



 , i = 1, 2, 3

∂f

∂p1
=





−y1

y1

0



 ,
∂f

∂p2
=





y2y3

−y2y3

0



 ,
∂f

∂p3
=





0
−y2

2

y2
2



 .

(32)

The source code for this example is listed in App. B.1. The main program is described below
with emphasis on the sensitivity related components. These explanations, together with those
given for the code cvdx in §7.1, will also provide the user with a template for instrumenting an
existing simulation code to perform forward sensitivity analysis. As will be seen from this example,
an existing simulation code can be modified to compute sensitivity variables (in addition to state
variables) by only inserting a few cvodes calls in the main program.

First note that no new header files need be included. In addition to the constants already
defined in cvdx we define the number of model parameters, NP (= 3), the number of sensitivity
parameters, NS (= 3), and a constant ZERO= 0.0.

As mentioned in §5.1 and §5.2.1, the user data structure f data must provide access to the
array of model parameters as the only way for cvodes to communicate parameter values to the
right hand side function f. In the cvfdx example this is done by defining f data to be of type
UserData, i.e. a pointer to a structure which contains an array of NP realtype values.

The program prologue ends by defining three additional private helper functions. The first
one, WrongArgs (which would not be present in a typical user code) prints a usage message and
stops execution if the command line arguments to cvfdx are wrong. After each successful return
from the main cvodes integrator, the functions PrintOutput and PrintOutputS print the state
and sensitivity variables, respectively. The program does not define any additional user-supplied
functions since this example uses the cvodes internal difference quotient routines to compute the
sensitivity equations right hand sides (see below).

The main function begins with definitions and type declarations. In addition to those in cvdx.s,
it defines the vector pbar of NP scaling factors for the model parameters p, the array plist of
integertype flags specifying the sensitivity parameters among the model parameters, and the
array yS of N Vector’s which will contain the initial conditions and solutions for the sensitivity
variables. It also declares the variable data of type UserData which will contain the user-data
structure to be passed to cvodes and used in the evaluation of the ODEs right hand sides.

The first code block in main deals with reading and interpreting the command line arguments.
cvfdx can be run with or without sensitivity computations turned on and with different selections
for the sensitivity method and error control strategy.

Next, the serial machine environment variable machEnv is initialized by calling the nvec-

tor serial function M EnvInit Serial and the user-data structure is allocated and initialized
with the model parameter values.

The next block of code is identical to that in cvdx.c and involves allocation and initialization
of the state variables and integration tolerances for the state variables, initialization of cvode mem

70

and of the cvodes solver memory. It also attaches cvdense, with a non-NULL Jacobian function,
as the linear solver to be used in the Newton nonlinear solver.

If sensitivity analysis is enabled (through the command line arguments), the main program will
then set the scaling parameters pbar (pbari = pi, which can typically be used for non-zero model
parameters) and the array of flags plist. The choice plisti = i + 1 indicates that sensitivities
with respect to all model parameters will be computed. Next, the program allocates memory for
yS, by calling the nvector function N VNew S, and initializaes all sensitivity variables to 0.0.

The call to CVodeSensMalloc specifies the sensitivity solution method through sensimeth (read
from the command line arguments) as SIMULTANEOUS, STAGGERED, or STAGGERED1 and the error
control strategy through err con (also read from the command line arguments) as either FULL or
PARTIAL. The ifS parameter indicates the type of sensitivity right hand side function (ALLSENS, or
ONESENS if the STAGGERED1 approach was selected), while the first NULL parameter indicates that
the cvodes internal difference quotient routines (CVSensRhsDQ or CVSensRhsDQ1, depending on
the value of ifS) should be used. The last two NULL parameters in the call to CVodeSensMalloc

force cvodes to set the relative and absolute tolerances rtolS and atolS for sensitivity variables
based on the tolerances for state variables and the scaling parameters pbar (see §2.2 for details).

The return value of CVodeSensMalloc is an int flag. In case of failure (flag != SUCCESS), the
main program prints an error message and stops execution.

Next, in a loop over the NOUT output times, the program calls the integration routine CVode

which, if sensitivity analysis was initialized through the call to CVodeSensMalloc, computes both
state and sensitivity variables. However, CVode returns only the state solution at tout in the vector
y. The program tests the return from CVode for a value other than SUCCESS and prints the state
variables. Sensitivity variables at tout are loaded into yS by calling CVodeSensExtract. The
program tests the return from CVodeSensExtract for a value other than SUCCESS and then prints
the sensitivity variables.

Finally, the program prints some final statistics and deallocates memory through calls to
N VFree, N VFree S, CVodeFree, and M EnvFree Serial.

The user-supplied functions f for the right hand side of the original ODEs and Jac for the
system Jacobian are identical to those in cvdx.c with the notable exeption that model parameters
are extracted from the user-data structure f data, which must be first cast to the UserData type.

Sample outputs from cvfdx, for two different combinations of command line arguments, follows.
The command to execute this program must have the form:

% cvfdx -nosensi

if no sensitivity calculations are desired, or

% cvfdx -sensi sensi_meth err_con

where sensi meth must be one of sim, stg, or stg1 to indicate the SIMULTANEOUS, STAGGERED, or
STAGGERED1 method, respectively and err con must be one of full or partial to select the FULL
or PARTIAL error control strategy, respectively.

The output generated by cvfdx when computing sensitivities with the SIMULTANEOUS method
and FULL error control (cvfdx -sensi sim full) is:

3-species chemical kinetics problem

===

71

T Q H NST y1 y2 y3

===

4.000e-01 3 3.507e-02 106

Solution 9.8517e-01 3.3864e-05 1.4794e-02

Sensitivity 1 -3.5595e-01 3.9026e-04 3.5556e-01

Sensitivity 2 9.5428e-08 -2.1310e-10 -9.5215e-08

Sensitivity 3 -1.5832e-11 -5.2900e-13 1.6361e-11

4.000e+00 4 1.705e-01 145

Solution 9.0552e-01 2.2405e-05 9.4458e-02

Sensitivity 1 -1.8761e+00 1.7922e-04 1.8759e+00

Sensitivity 2 2.9615e-06 -5.8304e-10 -2.9609e-06

Sensitivity 3 -4.9336e-10 -2.7627e-13 4.9363e-10

4.000e+01 3 1.872e+00 226

Solution 7.1582e-01 9.1854e-06 2.8417e-01

Sensitivity 1 -4.2476e+00 4.5906e-05 4.2476e+00

Sensitivity 2 1.3731e-05 -2.3572e-10 -1.3731e-05

Sensitivity 3 -2.2884e-09 -1.1381e-13 2.2885e-09

4.000e+02 3 1.006e+01 317

Solution 4.5051e-01 3.2228e-06 5.4949e-01

Sensitivity 1 -5.9584e+00 3.5418e-06 5.9584e+00

Sensitivity 2 2.2738e-05 -2.2595e-11 -2.2738e-05

Sensitivity 3 -3.7897e-09 -4.9947e-14 3.7898e-09

4.000e+03 2 1.486e+02 487

Solution 1.8319e-01 8.9415e-07 8.1681e-01

Sensitivity 1 -4.7500e+00 -5.9942e-06 4.7500e+00

Sensitivity 2 1.8809e-05 2.3128e-11 -1.8809e-05

Sensitivity 3 -3.1348e-09 -1.8758e-14 3.1348e-09

4.000e+04 3 2.000e+03 567

Solution 3.8978e-02 1.6215e-07 9.6102e-01

Sensitivity 1 -1.5748e+00 -2.7622e-06 1.5749e+00

Sensitivity 2 6.2870e-06 1.1003e-11 -6.2870e-06

Sensitivity 3 -1.0478e-09 -4.5363e-15 1.0478e-09

4.000e+05 3 1.765e+04 625

Solution 4.9391e-03 1.9853e-08 9.9506e-01

Sensitivity 1 -2.3638e-01 -4.5854e-07 2.3639e-01

Sensitivity 2 9.4523e-07 1.8330e-12 -9.4523e-07

Sensitivity 3 -1.5752e-10 -6.3633e-16 1.5752e-10

4.000e+06 4 2.252e+05 678

Solution 5.1687e-04 2.0685e-09 9.9948e-01

Sensitivity 1 -2.5669e-02 -5.1067e-08 2.5669e-02

Sensitivity 2 1.0267e-07 2.0425e-13 -1.0267e-07

Sensitivity 3 -1.7111e-11 -6.8516e-17 1.7111e-11

4.000e+07 3 1.457e+06 740

72

Solution 5.2046e-05 2.0820e-10 9.9995e-01

Sensitivity 1 -2.6001e-03 -5.1968e-09 2.6001e-03

Sensitivity 2 1.0400e-08 2.0787e-14 -1.0400e-08

Sensitivity 3 -1.7333e-12 -6.9338e-18 1.7333e-12

4.000e+08 3 2.570e+07 796

Solution 5.2108e-06 2.0843e-11 9.9999e-01

Sensitivity 1 -2.6043e-04 -5.2069e-10 2.6043e-04

Sensitivity 2 1.0417e-09 2.0828e-15 -1.0417e-09

Sensitivity 3 -1.7367e-13 -6.9470e-19 1.7367e-13

4.000e+09 3 3.805e+08 828

Solution 5.1965e-07 2.0786e-12 1.0000e+00

Sensitivity 1 -2.6131e-05 -5.2722e-11 2.6131e-05

Sensitivity 2 1.0452e-10 2.1089e-16 -1.0452e-10

Sensitivity 3 -1.7322e-14 -6.9288e-20 1.7322e-14

4.000e+10 3 7.725e+09 851

Solution 5.8386e-08 2.3355e-13 1.0000e+00

Sensitivity 1 -2.7256e-06 -5.0248e-12 2.7257e-06

Sensitivity 2 1.0903e-11 2.0099e-17 -1.0903e-11

Sensitivity 3 -1.9441e-15 -7.7764e-21 1.9441e-15

==

Final Statistics

Sensitivity: YES (SIMULTANEOUS + FULL ERROR CONTROL)

nst = 851

nfe = 7987 nfSe = 1141

nni = 1138 nniS = 0

ncfn = 4 ncfnS = 0

netf = 17 netfS = 0

nsetups = 136

nje = 24

==

The output generated by cvfdx when computing sensitivities with the STAGGERED1 method and
PARTIAL error control (cvfdx -sensi stg1 partial) is:

3-species chemical kinetics problem

===

T Q H NST y1 y2 y3

===

4.000e-01 3 1.153e-01 60

Solution 9.8517e-01 3.3863e-05 1.4797e-02

Sensitivity 1 -3.5609e-01 3.9023e-04 3.5570e-01

Sensitivity 2 9.4898e-08 -2.1323e-10 -9.4685e-08

73

Sensitivity 3 -1.5744e-11 -5.2897e-13 1.6273e-11

4.000e+00 4 4.988e-01 74

Solution 9.0552e-01 2.2404e-05 9.4458e-02

Sensitivity 1 -1.8761e+00 1.7920e-04 1.8759e+00

Sensitivity 2 2.9614e-06 -5.8312e-10 -2.9608e-06

Sensitivity 3 -4.9343e-10 -2.7624e-13 4.9371e-10

4.000e+01 4 3.084e+00 149

Solution 7.1583e-01 9.1856e-06 2.8416e-01

Sensitivity 1 -4.2476e+00 4.5911e-05 4.2475e+00

Sensitivity 2 1.3731e-05 -2.3572e-10 -1.3730e-05

Sensitivity 3 -2.2885e-09 -1.1381e-13 2.2887e-09

4.000e+02 3 8.617e+00 253

Solution 4.5055e-01 3.2232e-06 5.4945e-01

Sensitivity 1 -5.9583e+00 3.5447e-06 5.9583e+00

Sensitivity 2 2.2738e-05 -2.2614e-11 -2.2738e-05

Sensitivity 3 -3.7895e-09 -4.9951e-14 3.7896e-09

4.000e+03 3 7.015e+01 309

Solution 1.8323e-01 8.9446e-07 8.1677e-01

Sensitivity 1 -4.7502e+00 -5.9923e-06 4.7502e+00

Sensitivity 2 1.8809e-05 2.3118e-11 -1.8809e-05

Sensitivity 3 -3.1345e-09 -1.8756e-14 3.1345e-09

4.000e+04 4 2.367e+03 376

Solution 3.8981e-02 1.6216e-07 9.6102e-01

Sensitivity 1 -1.5748e+00 -2.7616e-06 1.5748e+00

Sensitivity 2 6.2869e-06 1.1001e-11 -6.2869e-06

Sensitivity 3 -1.0480e-09 -4.5369e-15 1.0480e-09

4.000e+05 4 1.343e+04 418

Solution 4.9411e-03 1.9861e-08 9.9506e-01

Sensitivity 1 -2.3635e-01 -4.5819e-07 2.3635e-01

Sensitivity 2 9.4504e-07 1.8315e-12 -9.4504e-07

Sensitivity 3 -1.5763e-10 -6.3679e-16 1.5763e-10

4.000e+06 4 2.009e+05 462

Solution 5.1705e-04 2.0693e-09 9.9948e-01

Sensitivity 1 -2.5660e-02 -5.1012e-08 2.5660e-02

Sensitivity 2 1.0265e-07 2.0411e-13 -1.0265e-07

Sensitivity 3 -1.7124e-11 -6.8567e-17 1.7124e-11

4.000e+07 3 2.705e+06 519

Solution 5.2016e-05 2.0808e-10 9.9995e-01

Sensitivity 1 -2.5994e-03 -5.1969e-09 2.5994e-03

Sensitivity 2 1.0398e-08 2.0789e-14 -1.0398e-08

Sensitivity 3 -1.7327e-12 -6.9316e-18 1.7327e-12

4.000e+08 3 2.965e+07 555

74

Solution 5.2035e-06 2.0814e-11 9.9999e-01

Sensitivity 1 -2.6029e-04 -5.2083e-10 2.6029e-04

Sensitivity 2 1.0413e-09 2.0839e-15 -1.0413e-09

Sensitivity 3 -1.7343e-13 -6.9374e-19 1.7343e-13

4.000e+09 3 5.173e+08 582

Solution 5.2150e-07 2.0860e-12 1.0000e+00

Sensitivity 1 -2.5711e-05 -5.0779e-11 2.5711e-05

Sensitivity 2 1.0343e-10 2.0546e-16 -1.0343e-10

Sensitivity 3 -1.7220e-14 -6.8881e-20 1.7220e-14

4.000e+10 3 4.476e+09 599

Solution 4.4137e-08 1.7655e-13 1.0000e+00

Sensitivity 1 -2.3026e-06 -4.7966e-12 2.3026e-06

Sensitivity 2 1.1004e-11 2.6360e-17 -1.1004e-11

Sensitivity 3 -1.8767e-15 -7.5069e-21 1.8767e-15

==

Final Statistics

Sensitivity: YES (STAGGERED1 + PARTIAL ERROR CONTROL)

nst = 599

nfe = 6413 nfSe = 2510

nni = 791 nniS = 2507

ncfn = 0 ncfnS = 0

netf = 24 netfS = 0

nsetups = 112

nje = 13

==

8.2 A Parallel Sample Program

The second example program for forward sensitivity analysis, pvfkx is the semi-discrete form of a
two-species diurnal kinetics advection-diffusion PDE system in 2-D space (29), described in §7.2,
for which we compute solution sensitivities with respect to the parameters q1 and q2 that appear
in the kinetic rate terms (30).

The source code for this example is listed in App. B.2. The overall structure of the main function
is very similar to that of the code cvfdx (§8.1) with differences arising from the use of the parallel
vector module. On the other hand, the user-supplied routines in pvfkx, f for the right-hand side
of the original system, Precond for the preconditioner set-up, and PSolve for the preconditioner
solve, are identical to those defined for the sample program pvkx (see §7.2). The only difference
is in the routine fcalc, which operates on local data only and contains the actual calculation
of f(t, u), where the problem parameters are first extracted from the user data structure data.
The program pvfkx defines no additional user-supplied routines, as it uses the cvodes internal

75

difference quotient routines to compute the sensitivity equation right hand sides (as indicated by
passing NULL for fS in the call to CVodeSensMalloc).

Sample outputs from pvfkx, for two different combinations of command line arguments, follow.
The command to execute this program must have the form:

% mpirun -np nproc pvfkx -nosensi

if no sensitivity calculations are desired, or

% mpirun -np nproc pvfkx -sensi sensi_meth err_con

where nproc is the number of processes, sensi meth must be one of sim, stg, or stg1 to indicate
the SIMULTANEOUS, STAGGERED, or STAGGERED1 method, respectively and err con must be one of
full or partial to select the FULL or PARTIAL error control strategy, respectively.

The output generated by pvfkx when computing sensitivities with the SIMULTANEOUS method
and FULL error control (mpirun -np 4 pvfkx -sensi sim full) is:

2-species diurnal advection-diffusion problem

==

T Q H NST Bottom left Top right

==

7.200e+03 3 3.757e+01 613

Solution 1.0468e+04 1.1185e+04

2.5267e+11 2.6998e+11

--

Sensitivity 1 -6.4201e+19 -6.8598e+19

7.1178e+19 7.6557e+19

--

Sensitivity 2 -4.3853e+14 -5.0065e+14

-2.4408e+18 -2.7843e+18

--

1.440e+04 3 4.063e+01 806

Solution 6.6590e+06 7.3008e+06

2.5819e+11 2.8329e+11

--

Sensitivity 1 -4.0848e+22 -4.4785e+22

5.9549e+22 6.7173e+22

--

Sensitivity 2 -4.5235e+17 -5.4318e+17

-6.5418e+21 -7.8315e+21

--

2.160e+04 3 4.223e+01 1325

Solution 2.6650e+07 2.9308e+07

2.9928e+11 3.3134e+11

--

Sensitivity 1 -1.6346e+23 -1.7976e+23

3.8203e+23 4.4991e+23

--

Sensitivity 2 -7.6601e+18 -9.4433e+18

-7.6459e+22 -9.4501e+22

76

--

2.880e+04 2 3.242e+01 1593

Solution 8.7021e+06 9.6500e+06

3.3804e+11 3.7510e+11

--

Sensitivity 1 -5.3375e+22 -5.9187e+22

5.4487e+23 6.7430e+23

--

Sensitivity 2 -4.8855e+18 -6.1040e+18

-1.7194e+23 -2.1518e+23

--

3.600e+04 4 4.744e+01 1708

Solution 1.4040e+04 1.5609e+04

3.3868e+11 3.7652e+11

--

Sensitivity 1 -8.6141e+19 -9.5761e+19

5.2718e+23 6.6030e+23

--

Sensitivity 2 -8.4328e+15 -1.0549e+16

-1.8439e+23 -2.3096e+23

--

4.320e+04 4 1.375e+02 1884

Solution 1.1785e-06 1.2879e-06

3.3823e+11 3.8035e+11

--

Sensitivity 1 2.0518e+08 2.2861e+08

5.2753e+23 6.7448e+23

--

Sensitivity 2 4.1216e+05 6.7832e+05

-1.8454e+23 -2.3595e+23

--

5.040e+04 4 2.551e+02 1919

Solution 3.1876e-06 3.5142e-06

3.3582e+11 3.8645e+11

--

Sensitivity 1 4.2351e+11 4.6705e+11

5.2067e+23 6.9664e+23

--

Sensitivity 2 1.5899e+08 1.9244e+08

-1.8214e+23 -2.4370e+23

--

5.760e+04 4 2.269e+02 1944

Solution 1.9220e-09 2.0977e-09

3.3203e+11 3.9090e+11

--

Sensitivity 1 3.1095e+08 3.4117e+08

5.0825e+23 7.1205e+23

--

Sensitivity 2 -2.7959e+03 -3.3004e+03

-1.7780e+23 -2.4910e+23

--

77

6.480e+04 4 2.472e+02 2011

Solution -1.3922e-07 -1.4787e-07

3.3130e+11 3.9634e+11

--

Sensitivity 1 -3.9244e+10 -4.1562e+10

5.0442e+23 7.3274e+23

--

Sensitivity 2 2.5992e+08 3.3160e+08

-1.7646e+23 -2.5633e+23

--

7.200e+04 4 3.633e+02 2031

Solution 6.3840e-08 6.7901e-08

3.3297e+11 4.0389e+11

--

Sensitivity 1 -7.6522e+10 -8.1142e+10

5.0783e+23 7.6382e+23

--

Sensitivity 2 -7.0536e+05 -9.0599e+05

-1.7765e+23 -2.6721e+23

--

7.920e+04 5 5.981e+02 2047

Solution -1.9542e-11 -2.0990e-11

3.3344e+11 4.1203e+11

--

Sensitivity 1 3.6012e+08 3.8075e+08

5.0730e+23 7.9960e+23

--

Sensitivity 2 3.1602e+03 4.0628e+03

-1.7747e+23 -2.7972e+23

--

8.640e+04 5 5.981e+02 2059

Solution 1.9297e-13 2.0929e-13

3.3518e+11 4.1625e+11

--

Sensitivity 1 1.0203e+07 1.0864e+07

5.1171e+23 8.2142e+23

--

Sensitivity 2 9.2985e+01 1.2081e+02

-1.7901e+23 -2.8736e+23

--

==

Final Statistics

Sensitivity: YES (SIMULTANEOUS + FULL ERROR CONTROL)

nst = 2059

nfe = 20935 nfSe = 2909

nni = 2907 nniS = 0

ncfn = 5 ncfnS = 0

78

netf = 125 netfS = 0

nsetups = 358

nli = 6390 ncfl = 0

npe = 45 nps = 13756

==

The output generated by pvfkx when computing sensitivities with the STAGGERED1 method and
PARTIAL error control (mpirun -np 4 pvfkx -sensi stg1 partial) is:

2-species diurnal advection-diffusion problem

==

T Q H NST Bottom left Top right

==

7.200e+03 5 1.587e+02 219

Solution 1.0468e+04 1.1185e+04

2.5267e+11 2.6998e+11

--

Sensitivity 1 -6.4201e+19 -6.8598e+19

7.1178e+19 7.6555e+19

--

Sensitivity 2 -4.3853e+14 -5.0065e+14

-2.4407e+18 -2.7842e+18

--

1.440e+04 5 3.772e+02 251

Solution 6.6590e+06 7.3008e+06

2.5819e+11 2.8329e+11

--

Sensitivity 1 -4.0848e+22 -4.4785e+22

5.9550e+22 6.7173e+22

--

Sensitivity 2 -4.5235e+17 -5.4317e+17

-6.5418e+21 -7.8315e+21

--

2.160e+04 5 2.746e+02 277

Solution 2.6650e+07 2.9308e+07

2.9928e+11 3.3134e+11

--

Sensitivity 1 -1.6346e+23 -1.7976e+23

3.8203e+23 4.4991e+23

--

Sensitivity 2 -7.6601e+18 -9.4433e+18

-7.6459e+22 -9.4502e+22

--

2.880e+04 4 3.892e+02 317

Solution 8.7021e+06 9.6500e+06

3.3804e+11 3.7510e+11

--

Sensitivity 1 -5.3375e+22 -5.9187e+22

5.4487e+23 6.7430e+23

--

79

Sensitivity 2 -4.8855e+18 -6.1040e+18

-1.7194e+23 -2.1518e+23

--

3.600e+04 4 6.819e+01 354

Solution 1.4040e+04 1.5609e+04

3.3868e+11 3.7652e+11

--

Sensitivity 1 -8.6140e+19 -9.5761e+19

5.2718e+23 6.6029e+23

--

Sensitivity 2 -8.4327e+15 -1.0549e+16

-1.8439e+23 -2.3096e+23

--

4.320e+04 3 3.803e+02 418

Solution -8.1385e-07 -1.2180e-06

3.3823e+11 3.8035e+11

--

Sensitivity 1 1.7207e+10 2.5638e+10

5.2753e+23 6.7448e+23

--

Sensitivity 2 1.4577e+10 1.1367e+11

-1.8454e+23 -2.3595e+23

--

5.040e+04 4 3.814e+02 439

Solution 4.7196e-15 6.9247e-15

3.3582e+11 3.8644e+11

--

Sensitivity 1 -2.0944e+01 -3.0544e+01

5.2067e+23 6.9664e+23

--

Sensitivity 2 -1.1189e+00 -8.7265e+00

-1.8214e+23 -2.4370e+23

--

5.760e+04 5 3.468e+02 453

Solution -2.0561e-15 -3.7287e-15

3.3203e+11 3.9090e+11

--

Sensitivity 1 -2.3030e+02 -4.3335e+02

5.0825e+23 7.1205e+23

--

Sensitivity 2 -1.3363e-02 -1.0547e-01

-1.7780e+23 -2.4909e+23

--

6.480e+04 5 6.295e+02 465

Solution 5.0794e-13 9.6988e-13

3.3130e+11 3.9634e+11

--

Sensitivity 1 1.6992e+06 3.2384e+06

5.0442e+23 7.3274e+23

--

Sensitivity 2 2.3651e+03 4.6473e+03

80

-1.7646e+23 -2.5633e+23

--

7.200e+04 5 6.295e+02 476

Solution 1.9550e-14 3.1172e-14

3.3297e+11 4.0388e+11

--

Sensitivity 1 4.3958e+06 8.3486e+06

5.0783e+23 7.6382e+23

--

Sensitivity 2 -1.9272e+04 -3.7518e+04

-1.7765e+23 -2.6721e+23

--

7.920e+04 5 6.295e+02 488

Solution -1.8536e-16 -3.3879e-16

3.3344e+11 4.1203e+11

--

Sensitivity 1 -4.0622e+05 -7.7061e+05

5.0730e+23 7.9960e+23

--

Sensitivity 2 -6.9109e+02 -1.3358e+03

-1.7747e+23 -2.7972e+23

--

8.640e+04 5 6.295e+02 499

Solution -1.1889e-18 -2.4800e-18

3.3518e+11 4.1625e+11

--

Sensitivity 1 -7.5772e+03 -1.4351e+04

5.1171e+23 8.2142e+23

--

Sensitivity 2 -1.1481e+01 -2.2086e+01

-1.7901e+23 -2.8736e+23

--

==

Final Statistics

Sensitivity: YES (STAGGERED1 + PARTIAL ERROR CONTROL)

nst = 499

nfe = 5214 nfSe = 1112

nni = 612 nniS = 1110

ncfn = 0 ncfnS = 0

netf = 33 netfS = 0

nsetups = 87

nli = 1876 ncfl = 0

npe = 9 nps = 3411

==

81

9 Example Problems for Adjoint Sensitivity Analysis

The cvodes distribution contains, in the sundials/cvodes/adj examples directory, the following
five examples for forward sensitivity analysis:

• cvadx solves a chemical kinetics problem consisting of three rate equations.

The adjoint capability of cvodes is used to compute gradients of a quantity of the form (17)
with respect to the three reaction rate constants appearing in the model. This program solves
both the forward and backward problems with the BDF method, Newton iteration with the
cvdense linear solver, and user-supplied Jacobian routines;

• cvabx solves the semi-discrete form of an advection-diffusion equation in 2-D.

The adjoint capability of cvodes is used to compute gradients of the average (over both time
and space) of the solution with respect to the initial conditions. This program solves both the
forward and backward problems with the BDF method, Newton iteration with the cvband

linear solver, and user-supplied Jacobian routines;

• cvakx solves a stiff ODE system that arises from a system of partial differential equations.
The PDE system is a six-species food web population model, with predator-prey interaction
and diffusion on the unit square in two dimensions.

The adjoint capability of cvodes is used to compute gradients of the average (over both time
and space) of the concentration of a selected species with respect to the initial conditions of
all six species. Both the forward and backward problems are solved with the BDF/GMRES
method (i.e. using the cvspgmr linear solver) and the block-diagonal part of the Newton
matrix as a left preconditioner;

• cvakxb solves the same problem as cvakx, but computes gradients of the average over space
at the final time of the concentration of a selected species with respect to the initial conditions
of all six species;

• pvanx solves the semi-discrete form of an advection-diffusion equation in 1-D.

The adjoint capability of cvodes is used to compute gradients of the average over space of
the solution at the final time with respect to both the initial conditions and the advection
and diffusion coefficients in the model. This program solves both the forward and backward
problems with the option for nonstiff systems, i.e. Adams method and functional iteration.

The first four are serial examples that use the nvector serial module and the last one is a
parallel example using the nvector parallel module.

The next two sections describe in detail a serial example (cvadx) and a parallel one (pvanx).
For details on the other examples, the reader is directed to the comments in their source files.

82

9.1 A Serial Sample Problem

As a first example of using cvodes for adjoint sensitivity analysis we examine the chemical kinetics
problem of §7.1 and §8.1:

ẏ1 = −p1y1 + p2y2y3

ẏ2 = p1y1 − p2y2y3 − p3y
2
2

ẏ3 = p3y
2
2

y(t0) = y0 ,

(33)

for which we want to compute the gradient with respect to p of

G(p) =

∫ t1

t0

(y1 + p2y2y3) dt, (34)

without having to compute the solution sensitivities dy/dp. Following the derivation of §2.3 and
taking into account the fact that the initial values of (33) do not depend on the parameters p, by
(21) this gradient is simply

dG

dp
=

∫ t1

t0

(

gp + λT fp

)

dt , (35)

where g(t, y, p) = y1 + p2y2y3, f is the vector valued function defining the right hand side of (33),
and λ is the solution of the adjoint problem (20),

λ̇ = −(fy)
Tλ− (gy)

T

λ(t1) = 0 .
(36)

In order to avoid saving intermediate λ values just for the evaluation of the integral in (35), we
extend the backward problem with the following Np quadrature equations

ξ̇ = gT
p + fT

p λ

ξ(t1) = 0 ,
(37)

which yield ξ(t0) = −
∫ t1
t0
(gT

p +fT
p λ)dt and thus dG/dp = −ξT (t0). Similarly, the value of G in (34)

can be obtained as G = −ζ(t0), where ζ is solution of the following quadrature equation:

ζ̇ = g

ζ(t1) = 0 .
(38)

The source code for this example is listed in App. C.1. The main program and the user-
defined routines are described below, with emphasis on the aspects particular to adjoint sensitivity
calculations. The calling program must include the cvodes header file cvodea.h which in turn
includes cvodes.h and thus provides cvodes function prototypes and constants, including those
in the adjoint sensitivity module.

This program also includes two user-defined accessor macros, Ith and IJth that are useful in
writing the problem functions in a form closely matching their mathematical description, i.e. with

83

components numbered from 1 instead of from 0. Following that, the program defines problem-
specific constants and a user-defined data structure which will be used to pass the values of the
parameters p to various user routines. The constant STEPS defines the number of integration steps
between two consecutive check points. The program prologue ends with the prototypes of four
user-supplied functions that are called by cvodes. The first two provide the right hand side and
dense Jacobian for the forward problem and the last two provide the right hand side and dense
Jacobian for the backward problem.

The main function begins with type declarations. Notice that we employ two machine environ-
ment variables, machEnvF for the forward problem and machEnvB for the backward problem. The
next code blocks allocate and initialize the user data structure with the values of the parameters
p, initialize machEnvF by calling the serial machine environment initialization routine from nvec-

tor serial, allocate and initialize y with the initial conditions of the forward problem, and finally
set the tolerances rtol and atol.

The call to CVodeMalloc sets-up the forward integration and specifies the BDF integration
method with NEWTON iteration. The linear solver is selected to be cvdense through the call to
its initialization routine CVDense, with a non-NULL Jacobian routine Jac.

Allocation for the memory block of the combined forward-backward problem is acomplished
through the call to CVadjMalloc which specifies STEPS=150, the number of steps between two
check points.

The call to CVodeF requests the solution of the forward problem to TOUT. If successful, at the end
of the integration, CVodeF will return the number of saved check points in the argument ncheck.
A list of the check points is printed by CVadjCheckPointsList.

The next segment of code deals with the setup of the backward problem. First, a serial machine
environment variable machEnvB is initialized for vectors of length NEQ + NP + 1 (dimension of λ +
dimension of ξ + one additional quadrature variable to evaluate G). Following that, the program
allocates space and initializes the variables of the backward problem and the relative and absolute
tolerances for the backward integration. cvodes memory for the integration of the backward
integration is allocated by the call to the interface routine CVodeMallocB which specifies the size
of the problem, the right hand side user function fB and the BDF integration method with NEWTON

iteration, among other things. The dense linear solver cvdense is then initialized by calling the
CVDenseB interface routine with a non-NULL Jacobian routine JacB.

The actual solution of the backward problem is acomplished through the call to CVodeB. If
successful, CVodeB returns the solution of the backward problem at time T0 in the vector yB.

The main program ends by printing the value of G and its gradient and by freeing previously
allocated memory through calls to CVodeFree (for the cvodes memory for the forward problem),
CVadjFree (for the memory allocated for the combined problem), N VFree (for the various vectors),
and M EnvFree Serial (for the two machine environment variables machEnvF and machEnvB).

The user-supplied functions f and Jac for the right hand side and Jacobian of the forward
problem are straightforward expressions of its mathematical formulation (33), while fB and JacB

are mere translations of the backward problem (36)–(37)–(38).
The output generated by cvadx is shown below.

Allocate CVODE memory for forward runs

Allocate global memory

84

Forward integration

List of Check Points (ncheck = 3)

Check point 3

address 50e40

t0 5210491.598010

t1 40000000.000000

next 50c98

Check point 2

address 50c98

t0 8078.421607

t1 5210491.598010

next 4fee0

Check point 1

address 4fee0

t0 66.985880

t1 8078.421607

next 4aa58

Check point 0

address 4aa58

t0 0.000000

t1 66.985880

next 0

Allocate CVODE memory for backward run

==

G: 1.8219e+04

Gp: -7.8383e+05 3.1991e+00 -5.3301e-04

==

lambda(t0): 3.4249e+04 3.4206e+04 3.4139e+04

==

Free memory

9.2 A Parallel Sample Program

As an example of using the cvodes adjoint sensitivity module with the parallel vector module
nvector parallel, we describe a sample program that solves the following problem: consider
the 1-D advection-diffusion equation

∂u

∂t
= p1

∂2u

∂x2
+ p2

∂u

∂x
0 = x0 ≤ x ≤ x1 = 2

0 = t0 ≤ t ≤ t1 = 2.5 ,

(39)

85

with boundary conditions u(t, x0) = u(t, x1) = 0, ∀t and initial condition u(t0, x) = u0(x) =
x(2− x)e2x. Also consider the function

g(t) =

∫ x1

x0

u(t, x)dx .

We wish to find, through adjoint sensitivity analysis, the gradient of g(t1) with respect to p = [p1; p2]
and the perturbation in g(t1) due to a perturbation δu0 in u0.

The approach we take in the program pvanx is to first derive an adjoint PDE which is then
discretized in space and integrated backwards in time to yield the desired sensitivities. A straight-
forward extension to PDEs of the derivation given in §2.3 gives

dg

dp
(t1) =

∫ t1

t0

dt

∫ x1

x0

dxµ ·
[

∂2u

∂x2
;
∂u

∂x

]

(40)

and

δg|t1 =

∫ x1

x0

µ(t0, x)δu0(x)dx , (41)

where µ is the solution of the adjoint PDE

∂µ

∂t
+ p1

∂2µ

∂x2
− p2

∂µ

∂x
= 0

µ(t1, x) = 1

µ(t, x0) = µ(t, x1) = 0 .

(42)

Both the forward problem (39) and the backward problem (42) are discretized on a uniform spatial
grid of size Mx + 2 with central differencing and with boundary values eliminated, leaving ODE
systems of size N = Mx each. As always, we deal with the time quadratures in (40) by introducing
the additional equations

ξ̇1 =

∫ x1

x0

dxµ
∂2u

∂x2
, ξ1(t1) = 0 ,

ξ̇2 =

∫ x1

x0

dxµ
∂u

∂x
, ξ2(t1) = 0 ,

(43)

yielding
dg

dp
(t1) = [ξ1(t0); ξ2(t0)]

The space integrals in (41) and (43) are evaluated numerically, on the given spatial mesh, using
the trapezoidal rule.

Note that µ(t0, x
∗) is nothing but the perturbation in g(t1) due to a perturbation δu0(x) = δ(x−

x∗) in the initial conditions. Therefore, µ(t0, x) completely describes δg(t1) for any perturbation
δu0.

The source code for this example is listed in App. C.2. Both the forward and the backward
problems are solved with the option for nonstiff systems, i.e. using the Adams method with
functional iteration for the solution of the nonlinear systems. The overall structure of the main

86

function is very similar to that of the code cvadx (§9.1) with differences arising from the use of the
parallel vector module.

Besides the parallelism implemented by cvodes at the vector kernel level, pvanx uses MPI
calls to parallelize the calculations of the right-hand side routines f and fB and of the spatial
integrals involved. The forward problem has size NEQ = MX, while the backward problem has size
NB = NEQ + NP, where NP = 2 is the number of quadrature equations in (43). The use of the
total number of available processes on two problems of different sizes deserves some comments,
as this is typical in adjoint sensitivity analysis. Out of the total number of available processes,
namely nprocs, the first npes = nprocs - 1 processes are dedicated to the integration of the
ODEs arising from the semi-discretization of the PDEs (39) and (42) and receive the same load on
both the forward and backward integration phases. The last process is reserved for the integration
of the quadrature equations (43), and is therefore inactive during the forward phases. Of course,
for problems involving a much larger number of quadrature equations, more than one process could
be reserved for their integration. An alternative would be to redistribute the NB backward problem
variables over all available processes, without any relationship to the load distribution of the forward
phase. However, the approach taken in pvanx has the advantage that the communication strategy
adopted for the forward problem can be directly transfered to communication among the first npes
processes during the backward integration phase.

We must also emphasize that, although inactive during the forward integration phase, the last
process must participate in that phase with a zero local array length. This is because, during
the backward integration phase, this process must have its own local copy of variables (such as
cvadj mem) that were set only during the forward phase.

Sample output generated by pvanx is shown below.

(PE# 0)

mu(t0)[1] = 0.000277648

mu(t0)[2] = 0.000562281

mu(t0)[3] = 0.000847703

mu(t0)[4] = 0.00112702

mu(t0)[5] = 0.00139372

(PE# 1)

mu(t0)[6] = 0.00164049

mu(t0)[7] = 0.0018611

mu(t0)[8] = 0.0020485

mu(t0)[9] = 0.00219734

mu(t0)[10] = 0.00230152

(PE# 2)

mu(t0)[11] = 0.00235718

mu(t0)[12] = 0.00235987

mu(t0)[13] = 0.00230773

mu(t0)[14] = 0.00219852

mu(t0)[15] = 0.00203278

(PE# 3)

mu(t0)[16] = 0.00181094

mu(t0)[17] = 0.00153609

mu(t0)[18] = 0.00121155

87

mu(t0)[19] = 0.000842963

mu(t0)[20] = 0.000436478

(PE# 4)

g(t1) = 0.019903

(PE# 4)

dgdp(t1) = [-1.12076 -1.00896]

88

10 Types realtype and integertype

10.1 Description

The sundialstypes.h file contains the definitions of the types realtype and integertype. sun-

dials solvers use the type realtype for all floating point data and the type integertype for all
problem size-related data such as the actual problem size, the bandwidths in the band solver, and
the integers stored in the length N pivot arrays in both the dense and band solvers. These types
make it easy to solve problems of virtually any size using single or double precision arithmetic. The
type realtype can be double or float and the type integertype can be int or long int. The
default settings are double and long int.

10.2 Changing Type realtype

The user can change the precision of the sundials solvers arithmetic from double to single by
changing the typedef typedef double realtype; to typedef float realtype; and by changing
in sundialstypes.h the definitions

#define SUNDIALS_FLOAT 0

#define SUNDIALS_DOUBLE 1

to

#define SUNDIALS_FLOAT 1

#define SUNDIALS_DOUBLE 0

These macro definitions are used to enable sundiastypes.h to branch on the setting of realtype
at compile time.

Changing from double precision to single precision arithmetic also requires minor changes in
the implementation file sundialsmath.c for the sundialsmath module which sundials solvers
use. The RPowerR and RSqrt functions compute a real number raised to a real power and the
square root of a number, respectively. The default implementation of these routines calls standard
C math library functions which do double precision arithmetic. These implementations should be
changed to call single precision routines which are available on the user’s machine.

Within sundials, real constants are set by way of a macro called RCONST. It is this macro that
needs the ability to branch on the setting for realtype. In ANSI C, a floating point constant with
no suffix is stored as a double. Placing the suffix “F” at the end of a floating point constant makes
it a float. For example,

#define A 1.0

#define B 1.0F

defines A to be a double constant 1.0 and B to be a float constant 1.0. The macro call RCONST(1.0)
expands to 1.0 if realtype is double and it expands to 1.0F if realtype is float. sundials uses
the RCONST macro for all its floating point constants.

A user program which uses the type realtype and the RCONST macro to handle floating point
constants is precision-independent except for any calls to single or double precision standard math
library functions. (Our demonstration programs use realtype but not RCONST.) Users can, however,

89

use the type double or float in their code (assuming the typedef for realtypematches this choice).
Thus, a previously existing piece of ANSI C code can use sundials without modifying the codes
to use realtype.

10.3 Changing Type integertype

sundials uses the type integertype for all quantities related to problem size. On some machines
the size of an int and a long int are the same, but this is not always the case. If int is sufficiently
large on a given machine, and the user wishes to make int the integertype type, change the typedef
typedef long int integertype; to typedef int integertype; and the macro definitions in
sundialstypes.h

#define SUNDIALS_INT 0

#define SUNDIALS_LONG_INT 1

to

#define SUNDIALS_INT 1

#define SUNDIALS_LONG_INT 0

In terms of the problem size N , and the bandwidths ml and mu in the case of the band module
band, the largest integer that must be accommodated by the integertype type is N+ ml + mu

in the band case, and N in all other cases. The user can use the type int or long int in his/her
code instead of integertype (assuming the typedef for integertype matches this choice).

90

11 Description of the nvector Concept

The sundials solvers are written in a data-independent manner. They all operate on generic
vectors (of type N Vector) through a set of operations defined by a generic machine environment
(of type M Env).

The generic M Env type is a pointer to a structure that has an implementation-dependent content
field containing all data necessary to generate a new vector in that particular implementation, an
ops field pointing to a structure with generic vector operations, and a tag field which is used in
some compatibility tests within the sundials solvers. The type M Env is defined as

typedef struct _generic_M_Env *M_Env;

struct _generic_M_Env {

void *content;

struct _generic_N_Vector_Ops *ops;

char tag[8];

};

The generic N Vector type is a pointer to a structure that has an implementation-dependent
content field containing the description and actual data of the vector and a menv field pointing to
the M Env structure that was used in constructing the vector. The type N Vector is defined as

typedef struct _generic_N_Vector *N_Vector;

struct _generic_N_Vector {

void *content;

struct _generic_M_Env *menv;

};

The generic N Vector Ops structure is defined as

struct _generic_N_Vector_Ops {

N_Vector (*nvnew)(integertype, M_Env);

N_Vector_S (*nvnewS)(integertype, integertype, M_Env);

void (*nvfree)(N_Vector);

void (*nvfreeS)(integertype, N_Vector_S);

N_Vector (*nvmake)(integertype, realtype *, M_Env);

void (*nvdispose)(N_Vector);

realtype* (*nvgetdata)(N_Vector);

void (*nvsetdata)(realtype *, N_Vector);

void (*nvlinearsum)(realtype, N_Vector, realtype, N_Vector, N_Vector);

void (*nvconst)(realtype, N_Vector);

void (*nvprod)(N_Vector, N_Vector, N_Vector);

void (*nvdiv)(N_Vector, N_Vector, N_Vector);

void (*nvscale)(realtype, N_Vector, N_Vector);

void (*nvabs)(N_Vector, N_Vector);

void (*nvinv)(N_Vector, N_Vector);

91

void (*nvaddconst)(N_Vector, realtype, N_Vector);

realtype (*nvdotprod)(N_Vector, N_Vector);

realtype (*nvmaxnorm)(N_Vector);

realtype (*nvwrmsnorm)(N_Vector, N_Vector);

realtype (*nvmin)(N_Vector);

realtype (*nvwl2norm)(N_Vector, N_Vector);

realtype (*nvl1norm)(N_Vector);

void (*nvonemask)(N_Vector);

void (*nvcompare)(realtype, N_Vector, N_Vector);

booleantype (*nvinvtest)(N_Vector, N_Vector);

booleantype (*nvconstrprodpos)(N_Vector, N_Vector);

booleantype (*nvconstrmask)(N_Vector, N_Vector, N_Vector);

realtype (*nvminquotient)(N_Vector, N_Vector);

void (*nvprint)(N_Vector);

};

In addition to the above type definitions, the generic nvector module also defines and imple-
ments the vector kernels acting on N Vector’s. These routines are nothing but wrappers around
the vector kernels defined by a particular nvector implementation, which are accessed through
the ops field of the structure pointed to by M Env. To illustrate this point we show below the
implementation of a typical vector kernel from the generic nvector module, namely N VScale,
which performs the scaling of a vector x by a scalar c:

void N_VScale(realtype c, N_Vector x, N_Vector z)

{

z->menv->ops->nvscale(c, x, z);

}

Table 5 contains a complete list of all vector operations defined by the generic nvector module.
A particular implementaion of the nvector module must:

• specify the content fields of M Env and N Vector;

• define and implement the vector kernels. Note that the kernel routine names should be unique
to that implementation in order to provide the option of using N Vector’s with different
internal representations in the same code;

• define and implement user-callable constructor and destructor routines to generate and free
a variable of type M Env with the new content field and with ops pointing to the new vector
kernels.

We also strongly recommend that the developer of a new nvector implementation provide as
many accessor macros as needed for that particular implementation to be used to access different
parts in the content field of the newly defined N Vector.

92

Table 5: Description of the nvector kernels

Name Usage and Description

N VNew v = N VNew(n, machEnv);

Returns a new N Vector of length n. If there is not enough memory for
a new N Vector, then N VNew returns NULL.

N VNew S vs = N VNew S(ns, n, machEnv);

Returns an array of ns new N Vector’s of length n. The parameter
machEnv is a pointer to machine environment specific information. If
there is not enough memory for a new array of N Vector’s or for one of
the components, then N VNew S returns NULL.

N VFree N VFree(v);

Frees the N Vector v. It is illegal to use v after the call to N VFree.
N VFree S N VFree S(ns, vs);

Frees the array of ns N Vector’s vs. It is illegal to use vs after the call
to N VFree S.

N VMake v = N VMake(n, vdata, machEnv);

Creates an N Vector of length n with component array data vdata allo-
cated by the user.

N VDispose N VDispose(v);

Destroys an N Vector created by a previous call to N VMake. It is the
user’s responsability to free the memory allocated for the data array.

N VGetData vdata = N VGetData(v);

Returns a pointer to the data component array from the N Vector v.
N VSetData N VSetData(vdata, v);

Attaches the data component array vdata to the N Vector v.
N VLinearSum N VLinearSum(a, x, b, y, z);

Performs the operation z = ax+ by, where a and b are scalars and x and
y are N Vector’s: zi = axi + byi, i = 0, 1, . . . , n− 1.

N VConst N VConst(c, z);

Initializes all components of the N Vector z to c: zi = c, i = 0, 1, . . . , n−1
.

N VProd N VProd(x, y, z);

Sets the N Vector z to be the component-wise product of the N Vector’s
x and y: zi = xiyi, i = 0, 1, . . . , n− 1.

N VDiv N VDiv(x, y, z);

Sets the N Vector z to be the component-wise ratio of the N Vector’s x
and y: zi = xi/yi, i = 0, 1, . . . , n − 1. The yi may not be tested for 0
values.

continued on next page

93

continued from last page

Name Usage and Description

N VScale N VScale(c, x, z);

Scales the N Vector x by the scalar c and returns the result in z: zi =
cxi, i = 0, 1, . . . , n− 1.

N VAbs N VAbs(x, y);

Sets the components of the N Vector y to be the absolute values of the
components of the N Vector x: yi = |xi|, i = 0, 1, . . . , n− 1.

N VInv N VInv(x, z);

Sets the components of the N Vector z to be the inverses of the compo-
nents of the N Vector x: zi = 1.0/xi, i = 0, 1, . . . , n − 1. This routine
may not check for division by 0. It should be called only with an x which
is guaranteed to have all non-zero components.

N VAddConst N VAddConst(x, b, z);

Adds the scalar b to all components of x and returns the result in the
N Vector z: zi = xi + b, i = 0, 1, . . . , n− 1.

N VDotProd d = N VDotProd(x, y);

Returns the value of the ordinary dot product of x and y: d =
∑n−1

i=0 xiyi.
N VMaxNorm m = N VMaxNorm(x);

Returns the maximum norm of the N Vector x: m = maxi |xi|.
N VWrmsNorm m = N VWrmsNorm(x, w)

Returns the weighted root mean square norm of the N Vector x with

weight vector w: m =

√

(

∑n−1
i=0 (xiwi)2

)

/n.

N VMin m = N VMin(x);

Returns the smallest element of the N Vector x: m = mini xi.
N VWL2Norm m = N VWL2Norm(x, w);

Returns the weighted Euclidean `2 norm of the N Vector x with weight

vector w: m =
√

∑n−1
i=0 (xiwi)2.

N VL1Norm m = N VL1Norm(x);

Returns the `1 norm of the N Vector x: m =
∑n−1

i=0 |xi|.
N VOneMask N VOneMask(x);

Sets the non-zero components of the N Vector to 1.0: xi = 1.0, if xi 6=
0.0, i = 0, 1, . . . , n− 1.

N VCompare N VCompare(c, x, z);

Compares the components of the N Vector x to the scalar c and returns
an N Vector z such that: zi = 1.0 if |xi| ≥ c and zi = 0.0 otherwise.

N VInvTest t = N VInvTest(x, z);

Sets the components of the N Vector z to be the inverses of the compo-
nents of the N Vector x: zi = 1.0/xi, i = 0, 1, . . . , n − 1. This routine
returns TRUE if all components of x are non-zero (successful inversion)
and returns FALSE otherwise.

continued on next page

94

continued from last page

Name Usage and Description

N VConstrProdPos t = N VConstrProdPos(c, x);

Returns a boolean equal to FALSE if, for some i = 0, 1, . . . , n−1, ci 6= 0.0
and xici ≤ 0.0, and TRUE otherwise. This routine is used for constraint
checking.

N VConstrMask t = N VConstrMask(c, x, m);

Performs the following constraint tests: xi > 0 if ci = 2, xi ≥ 0 if ci = 1,
xi ≤ 0 if ci = −1, xi < 0 if ci = −2. This routine returns FALSE if any
element failed the constraint test, TRUE if all passed. It also sets a mask
vector m, with elements equal to 1.0 where the corresponding constraint
test failed, and 0.0 where the test passed. This routine is used only for
constraint checking.

N VMinQuotient minq = N VMinQuotient(num, denom);

This routine returns the minimum of the quotients obtained by term-wise
dividing num[i] by denom[i]. A zero element in denom will be skipped.
If no such quotients are found, then the large value 1099 is returned.

11.1 The nvector serial Implementation of nvector

The nvector serial implementation of the nvector module defines the content field of M Env

to be a structure containing the length of the vector:

struct _M_EnvSerialContent {

integertype length;

};

The tag field of M Env is set to serial. The content field of N Vector is defined to be a structure
containing the length of the vector and a pointer to the beginning of a contiguous data array:

struct _N_VectorSerialContent {

integertype length;

realtype *data;

};

The nvector serial implementation provides user-callable routines M EnvInit Serial to cre-
ate a structure of type M Env whose content field is of type struct M EnvSerialContent, and
M EnvFree Serial to deallocate the space used by such a structure.
The form of the call to M EnvInit Serial is

machenv = M_EnvInit_Serial(vec_length);

If successful, M EnvInit Serial returns a pointer of type M Env. This pointer should in turn be
passed in any user calls to N VNew to create a new N Vector of this type. A machine environemnt
variable machenv returned by M EnvInit Serial can be freed by calling:

M_EnvFree_Serial(machenv);

95

In addition to these two routines, nvector serial defines serial implementations of all vector
kernels listed in Table 5, as well as the following macros that can be used to access the contents of
M Env and N Vector or to create and destroy N Vector’s with component array data allocated by
the user. The suffix S in the names denotes serial version.

• ME CONTENT S, NV CONTENT S

These macros give access to the contents of the serial machine environment and N Vector,
respectively.

The assignment m cont = ME CONTENT S(machenv) sets m cont to be a pointer to the serial
machine environment content structure (of type struct M EnvSerialContent).

The assignment v cont = NV CONTENT S(v) sets v cont to be a pointer to the serial N Vector

content structure of type struct N VectorSerialContent.

• NV DATA S, NV LENGTH S

These macros give individual access to the parts of the content of a serial N Vector.

The assignment v data = NV DATA S(v) sets v data to be a pointer to the first component
of v. The assignment NV DATA S(v) = v data sets the component array of v to be v data by
storing the pointer v data.

The assignment v len = NV LENGTH S(v) sets v len to be the length of v. On the other
hand, the call NV LENGTH S(v) = len v sets the length of v to be len v.

• NV Ith S

This macro gives access to the individual components of the data array of an N Vector.

The assignment r = NV Ith S(v,i) sets r to be the value of the i-th component of v. The
assignment NV Ith S(v,i) = r sets the value of the i-th component of v to be r.

• NV MAKE S, NV DISPOSE S

These companion macros are used to create and destroy an N Vector with a component array
vdata allocated by the user.

The call NV MAKE S(v,v data,machenv) makes v an N Vector with component array v data.
The length of the array is taken from machenv. NV MAKE S stores the pointer v data so that
changes made by the user to the elements of v data are simultaneously reflected in v. There
is no copying of elements.

The call NV DISPOSE S(v) frees all memory associated with v except for its component array.
This memory was allocated by the user and, therefore, should be deallocated by the user.

• NVS MAKE S, NVS DISPOSE S

These companion macros are used to create and destroy an array of N Vector’s with compo-
nent vs data (of type realtype **) allocated by the user.

The call NVS MAKE S(vs,vs data,ns,machenv) makes vs an array of ns N Vector’s, with
vs[i] having component array vs data[i] and length taken from machenv. NVS MAKE S

stores the pointers vs data[i] so that changes made by the user to the elements of vs data

are simultaneously reflected in vs. There is no copying of elements.

96

The call NVS DISPOSE S(vs,ns) frees all memory associated with vs except for its compo-
nents’ component array. This memory was allocated by the user and, therefore, should be
deallocated by the user.

Notes

• Users who use the make/dispose macros must #include<stdlib.h> since these macros ex-
pand to calls to malloc and free.

• When looping over the components of an N Vector v, it is more efficient to first obtain the
component array via v data = NV DATA S(v) and then access v data[i] within the loop
than it is to use NV Ith S(v,i) within the loop.

NV MAKE S and NV DISPOSE S are similar to the N VNew and N VFree implemented by nvec-

tor serial, while NVS MAKE S and NVS DISPOSE S are similar to N VNew S and N VFree S.
The difference is one of responsibility for component memory allocation and deallocation.
N VNew allocates memory for the N Vector components and N VFree frees the component
memory allocated by N VNew. For NV MAKE S and NV DISPOSE S, the component memory
is allocated and freed by the user of this package. Similar remarks hold for NVS MAKE S,
NVS DISPOSE S and N VNew S, N VFree S.

• To maximize efficiency, vector kernels in the nvector serial implementation that have
more than one N Vector argument do not check for consistent internal representation of these
vectors. It is the user’s responsibility to ensure that such routines are called with N Vector

arguments that were all created with the M Env structure returned by M EnvInit Serial.

11.2 The nvector parallel Implementation of nvector

The nvector parallel implementation of the nvector module defines the content field of M Env

to be a structure containing the local and global lengths of the vector, a pointer to the MPI
communicator, and a flag showing if the user called MPI Init:

struct _M_EnvParallelContent {

MPI_Comm comm;

integertype local_vec_length;

integertype global_vec_length;

int init_by_user;

};

The tag field of M Env is set to parallel. The content field of N Vector is defined to be a structure
containing the global and local lengths of the vector and a pointer to the beginning of a contiguous
local data array:

struct _N_VectorParallelContent {

integertype local_length;

integertype global_length;

realtype *data;

};

97

The nvector parallel implementation provides user-callable routines M EnvInit Parallel

to create a structure of type M Env whose content field is of type struct M EnvParallelContent,
and M EnvFree Parallel to deallocate the space used by such a structure.
The form of the call to M EnvInit Parallel is

machenv = M_EnvInit_Parallel(comm, local_vec_length, global vec_length,

argc, argv);

Its arguments are:

• comm is a pointer to the MPI communicator, of type MPI Comm. Must be non-NULL;

• local vec length is the length of the piece of the vectors residing on this processor. If the
active processor set is a proper subset of the full processor set assigned to the job, the value of
local vec length should be 0 on the inactive processors. Otherwise, the two global length
values, input and computed, may differ;

• global vec length is the global length of the vectors. This must equal the sum of all local
lengths over the active processor set. If not, a message is printed;

• argc, argv are the command line arguments count and the command line argument character
array from the main program, respectively. Dummy arguments are acceptable if MPI Init

has already been called.

If successful, M EnvInit Parallel returns a pointer of type M Env. This pointer should in turn be
passed in any user calls to N VNew to create a new N Vector of this type. A machine environemnt
variable machenv returned by M EnvInit Parallel can be freed by calling:

M_EnvFree_Parallel(machenv);

In addition to these two routines, nvector parallel defines MPI implementations of all vector
kernels listed in Table 5, as well as the following macros that can be used to access the contents of
M Env and N Vector or to create and destroy N Vector’s with component array data allocated by
the user. The suffix P in the names denotes parallel version.

• ME CONTENT P, NV CONTENT P

These macros give access to the contents of the parallel machine environment and N Vector,
respectively.

The assignment m cont = ME CONTENT P(machenv) sets m cont to be a pointer to the parallel
machine environment content structure (of type struct M EnvParallelContent).

The assignment v cont = NV CONTENT P(v) sets v cont to be a pointer to the N Vector

content structure of type struct N VectorParallelContent.

• NV DATA P, NV LOCLENGTH P, NV GLOBLENGTH P

These macros give individual access to the parts of the content of a parallel N Vector.

The assignment v data = NV DATA P(v) sets v data to be a pointer to the first component of
the local data for the vector v. The assignment NV DATA P(v) = v data sets the component
array of v to be v data by storing the pointer v data.

98

The assignment v llen = NV LOCLENGTH P(v) sets v llen to be the length of the local part
of v. The call NV LENGTH P(v) = llen v sets the local length of v to be llen v.

The assignment v glen = NV GLOBLENGTH P(v) sets v glen to be the global length of the
vector v. The call NV GLOBLENGTH P(v) = glen v sets the global length of v to be glen v.

• NV Ith P

This macro gives access to the individual components of the local data array of an N Vector.

The assignment r = NV Ith P(v,i) sets r to be the value of the i-th component of the local
part of v. The assignment NV Ith P(v,i) = r sets the value of the i-th component of the
local part of v to be r.

• NV MAKE P, NV DISPOSE P

These companion macros are used to create and destroy an N Vector with a component array
vdata allocated by the user.

The call NV MAKE P(v,v data,machenv) makes v an N Vector with local component array
v data. The local and global lengths of the vector v is taken from machenv. NV MAKE P

stores the pointer v data so that changes made by the user to the elements of v data are
simultaneously reflected in v. There is no copying of elements.

The call NV DISPOSE P(v) frees all memory associated with v except for its component array.
This memory was allocated by the user and, therefore, should be deallocated by the user.

• NVS MAKE P, NVS DISPOSE P

These companion macros are used to create and destroy an array of N Vector’s with compo-
nent vs data (of type realtype **) allocated by the user.

The call NVS MAKE P(vs,vs data,ns,machenv) makes vs an array of ns N Vector’s, with
vs[i] having local component array vs data[i] and local and global lengths taken from
machenv. NVS MAKE P stores the pointers vs data[i] so that changes made by the user to
the elements of vs data are simultaneously reflected in vs. There is no copying of elements.

The call NVS DISPOSE P(vs,ns) frees all memory associated with vs except for its compo-
nents’ component array. This memory was allocated by the user and, therefore, should be
deallocated by the user.

Notes

• Users who use the make/dispose macros must #include<stdlib.h> since these macros ex-
pand to calls to malloc and free.

• When looping over the components of an N Vector v, it is more efficient to first obtain the
local component array via v data = NV DATA P(v) and then access v data[i] within the
loop than it is to use NV Ith P(v,i) within the loop.

NV MAKE P and NV DISPOSE P are similar to N VNew and N VFree implemented by nvec-

tor parallel, while NVS MAKE P and NVS DISPOSE P are similar to N VNew S and N VFree S.
The difference is one of responsibility for component memory allocation and deallocation.
N VNew allocates memory for the N Vector components and N VFree frees the component

99

memory allocated by N VNew. For NV MAKE P and NV DISPOSE P, the component memory
is allocated and freed by the user of this package. Similar remarks hold for NVS MAKE P,
NVS DISPOSE P and N VNew S, N VFree S.

• To maximize efficiency, vector kernels in the nvector parallel implementation that have
more than one N Vector argument do not check for consistent internal representation of these
vectors. It is the user’s responsability to ensure that such routines are called with N Vector

arguments that were all created with the M Env structure returned by M EnvInit Parallel.

11.3 nvector Kernels Used by cvodes

In Table 6 below, we list the vector kernels in the nvector module within the cvodes package.
The table also shows, for each kernel, which of the code modules uses the kernel. The cvodes

column shows kernel usage within the main integrator module, while the remaining four columns
show kernel usage within each of the four cvodes linear solvers.

There is one subtlety in the cvspgmr column hidden by the table. The dot product kernel
N VDotProd is not called within the implementation file cvsspgmr.c for the cvspgmr solver, yet
we have marked it as “used” by cvspgmr. This is because N VDotProd is called within the imple-
mentation files spgmr.c and iterative.c for the generic spgmr solver upon which the cvspgmr

solver is implemented. This issue does not arise for the other three cvodes linear solvers because
the generic dense and band solvers (used in the implementation of cvdense and cvband) do not
make calls to any vector kernels and cvdiag is not implemented using a generic diagonal solver.

The vector kernels N VMake, N VDispose, N VGetData, and N VSetData are only called by one
of the cvodes direct linear solvers, cvdense or cvband, or by a preconditioner solve routine
that uses a direct linear solver (such as cvbandpre or cvbbdpre). They duplicate functionality
provided by macros in particular implementations of nvector, but are part of the specifications of
the generic nvector module to insure that the cvodes package is not dependent on any particular
nvector implementation.

At this point, we should emphasize that the cvodes user does not need to know anything about
the usage of vector kernels by the cvodes code modules in order to use cvodes. The information
is presented as implementation details for the interested reader.

The vector kernels listed in Table 5 that are not used by cvodes are: N VWL2Norm, N VL1Norm,
N VOneMask, N VConstrProdPos, N VConstrMask, and N VMinQuotient. Therefore a user-supplied
nvector module for cvodes could omit these six kernels.

100

Table 6: List of vector kernels usage by cvodes code modules

Kernel cvodes cvdense cvband cvdiag cvspgmr

N VNew X X X

N VFree X X X

N VNew S X

N VFree S X

N VMake X X

N VDispose X X

N VGetData X X

N VSetData X X

N VLinearSum X X X X

N VConst X X

N VProd X X X

N VDiv X X X

N VScale X X X X X

N VAbs X

N VInv X X

N VAddConst X X

N VDotProd X

N VMaxNorm X

N VWrmsNorm X X X X

N VMin X

N VCompare X

N VInvTest X

101

12 Providing Alternate Linear Solver Modules

The central cvodes module interfaces with the linear solver module to be used by way of calls
to five routines. These are denoted here by linit, lsetup, lsolve, lsolveS, and lfree. Briefly,
their purposes are as follows:

• linit: initialize and allocate memory specific to the linear solver;

• lsetup: evaluate and preprocess the Jacobian or preconditioner;

• lsolve: solve the linear system;

• lsolveS: solve the linear system;

• lfree: free the linear solver memory.

The lsolveS routine is intended only for use during forward sensitivity analysis for the solution of
linear systems coming from the sensitivity systems, and need not be implemented if cvodes will
not be used for forward sensitivity analysis.

A linear solver module must also provide a user-callable specification routine (like those de-
scribed in §4.3.2) which will atach the above five routines to the main cvodes memory block.
The return value of the specification routine should be: SUCCESS = 0 if the routine was successful,
LMEM FAIL = -1 if a memory allocation failed, or LIN ILL INPUT = -2 if some input was illegal.

These five routines that interface between cvodes and the linear solver module necessarily have
fixed call sequences. Thus a user wishing to implement another linear solver within the cvodes

package must adhere to this set of interfaces. The following is a complete description of the call
list for each of these routines. Note that the call list of each routine includes a pointer to the
main cvodes memory block, by which the routine can access various data related to the cvodes

solution. The contents of this memory block are given in the file cvodes.h (but not reproduced
here, for the sake of space).

Initialization routine. The type definition of linit is

int (*cv_linit)(CVodeMem cv_mem);

The purpose of linit is to complete initializations for specific linear solver, such as counters
and statistics. An linit function should return LINIT OK = 0 if it has successfully initialized the
cvodes linear solver and LINIT ERR = -1 otherwise. If an error does occur, an appropriate message
should be sent to cv mem->errfp.

Setup routine. The type definition of lsetup is

int (*cv_lsetup)(CVodeMem cv_mem, int convfail, N_Vector ypred,

N_Vector fpred, booleantype *jcurPtr, N_Vector vtemp1,

N_Vector vtemp2, N_Vector vtemp3);

The job of lsetup is to prepare the linear solver for subsequent calls to lsolve. It may re-compute
Jacobian-related data is it deems necessary. Its parameters are as follows:

102

• cv mem: problem memory pointer of type CVodeMem.

• convfail: a flag to indicate any problem that occurred during the solution of the nonlinear
equation on the current time step for which the linear solver is being used. This flag can be
used to help decide whether the Jacobian data kept by a cvodes linear solver needs to be
updated or not. Its possible values are:

– NO FAILURES: this value is passed to lsetup if either this is the first call for this step, or
the local error test failed on the previous attempt at this step (but the Newton iteration
converged).

– FAIL BAD J: this value is passed to lsetup if (a) the previous Newton corrector iteration
did not converge and the linear solver’s setup routine indicated that its Jacobian-related
data is not current, or (b) during the previous Newton corrector iteration, the linear
solver’s solve routine failed in a recoverable manner and the linear solver’s setup routine
indicated that its Jacobian-related data is not current.

– FAIL OTHER: this value is passed to lsetup if during the current internal step try, the
previous Newton iteration failed to converge even though the linear solver was using
current Jacobian-related data.

• ypred: the predicted y vector for the current cvodes internal step.

• fpred: the value of the right-hand side at ypred, i.e. f(tn, ypred).

• jcurPtr: a pointer to a boolean to be filled in by lsetup. The function should set *jcurPtr
= TRUE if its Jacobian data is current after the call and should set *jcurPtr = FALSE if
its Jacobian data is not current. If lsetup calls for re-evaluation of Jacobian data (based
on convfail and cvodes state data), it should return *jcurPtr = TRUE unconditionally;
otherwise an infinite loop can result.

• vtemp1, vtemp2, vtemp3: temporary variables of type N Vector provided for use by lsetup.

The lsetup routine should return 0 if successful, a positive value for a recoverable error, and a
negative value for an unrecoverable error.

Solve routine. The type definition of lsolve is

int (*cv_lsolve)(CVodeMem cv_mem, N_Vector b, N_Vector ycur, N_Vector fcur);

The routine lsolve must solve the linear equation Mx = b, where M is some approximation to
I − γJ , J = (∂f/∂y)(tn, ycur) and the right-hand side vector b is input. The vector ycur contains
the solver’s current approximation to y(tn) and the vector fcur contains f(tn, ycur). The solution
is to be returned in the vector b. lsolve returns a positive value for a recoverable error and a
negative value for an unrecoverable error. Success is indicated by a 0 return value.

Sensitivity solve routine. The type definition of lsolve is

int (*cv_lsolveS)(CVodeMem cv_mem, N_Vector b, N_Vector ycur,

N_Vector fcur, integertype iS);

103

The routine lsolveS must solve the linear system Mx = b corresponding to the iS-th sensitivity
system. This routine is typically identical to lsolve (except for the additional argument iS). Of
the four linear solvers modules provided with cvodes, only the cvspgmr module has an lsolveS

routine that takes into account iS to select the correct scaling vectors for left or right precondi-
tioning.

Memory deallocation routine. The type definition of lfree is

void (*cv_lfree)(CVodeMem cv_mem);

The routine lfree should free up any memory allocated by the linear solver. This routine is called
once a problem has been completed and the linear solver is no longer needed.

104

13 Generic Linear Solvers in sundials

In this section, we describe three generic linear solver code modules that are included in cvodes,
but which are of potential use as generic packages in themselves, either in conjunction with the use
of cvodes or separately. These modules are:

• The dense matrix package, which includes the matrix type DenseMat, macros and functions
for DenseMat matrices, and functions for small dense matrices treated as simple array types.

• The band matrix package, which includes the matrix type BandMat, macros and functions
for BandMat matrices, and functions for small band matrices treated as simple array types.

• The spgmr package, which includes a solver for the scaled preconditioned GMRES method.

For the sake of space, the functions for DenseMat and BandMat matrices and the functions in
spgmr are only summarized briefly, since they are less likely to be of direct use in connection with
cvodes. The functions for small dense matrices are fully described, because we expect that they
will be useful in the implementation of preconditioners used with the combination of cvode and
the cvspgmr solver.

13.1 The dense Module

Type DenseMat. The type DenseMat is defined to be a pointer to a structure with a size and a
data field:

typedef struct {

integertype size;

realtype **data;

} *DenseMat;

The size field indicates the number of columns (which is the same as the number of rows) of a
dense matrix, while the data field is a two dimensional array used for component storage. The
elements of a dense matrix are stored columnwise (i.e columns are stored one on top of the other in
memory). If A is of type DenseMat, then the (i,j)-th element of A (with 0 ≤ i, j ≤ size−1) is given
by the expression (A->data)[j][i] or by the expression (A->data)[0][j*size+i]. The macros
below allow a user to access efficiently individual matrix elements without writing out explicit data
structure references and without knowing too much about the underlying element storage. The
only storage assumption needed is that elements are stored columnwise and that a pointer to the
j-th column of elements can be obtained via the DENSE COL macro. Users should use these macros
whenever possible.

Accessor Macros. The following two macros are defined by the dense module to provide access
to data in the DenseMat type:

• DENSE ELEM

Usage : DENSE ELEM(A,i,j) = a ij; or a ij = DENSE ELEM(A,i,j);

DENSE ELEM references the (i,j)-th element of the N ×N DenseMat A, 0 ≤ i, j ≤ N − 1.

105

• DENSE COL

Usage : col j = DENSE COL(A,j);

DENSE COL references the j-th column of the N ×N DenseMat A, 0 ≤ j ≤ N − 1. The type
of the expression DENSE COL(A,j) is realtype * . After the assignment in the usage above,
col j may be treated as an array indexed from 0 to N − 1. The (i, j)-th element of A is
referenced by col j[i].

Functions. The following functions for DenseMat matrices are available in the dense package.
For full details, see the header file dense.h.

• DenseAllocMat: allocation of a DenseMat matrix;

• DenseAllocPiv: allocation of a pivot array for use with DenseFactor/DenseBacksolve;

• DenseFactor: LU factorization with partial pivoting;

• DenseBacksolve: solution of Ax = b using LU factorization;

• DenseZero: load a matrix with zeros;

• DenseCopy: copy one matrix to another;

• DenseScale: scale a matrix by a scalar;

• DenseAddI: increment a matrix by the identity matrix;

• DenseFreeMat: free memory for a DenseMat matrix;

• DenseFreePiv: free memory for a pivot array;

• DensePrint: print a DenseMat matrix to standard output.

Small Dense Matrix Functions. The following functions for small dense matrices are available
in the dense package:

• denalloc

denalloc(n) allocates storage for an n by n dense matrix. It returns a pointer to the newly
allocated storage if successful. If the memory request cannot be satisfied, then denalloc

returns NULL. The underlying type of the dense matrix returned is realtype**. If we allocate
a dense matrix realtype** a by a = denalloc(n), then a[j][i] references the (i,j)-th
element of the matrix a, 0 ≤ i, j ≤ n−1, and a[j] is a pointer to the first element in the j-th
column of a. The location a[0] contains a pointer to n2 contiguous locations which contain
the elements of a;

• denallocpiv

denallocpiv(n) allocates an array of n integers. It returns a pointer to the first element in
the array if successful. It returns NULL if the memory request could not be satisfied;

106

• gefa

gefa(a,n,p) factors the n by n dense matrix a. It overwrites the elements of a with its LU
factors and keeps track of the pivot rows chosen in the pivot array p.

A successful LU factorization leaves the matrix a and the pivot array p with the following
information:

1. p[k] contains the row number of the pivot element chosen at the beginning of elimination
step k, k = 0, 1, ...,n−1.

2. If the unique LU factorization of a is given by Pa = LU , where P is a permutation
matrix, L is a lower triangular matrix with all 1’s on the diagonal, and U is an upper
triangular matrix, then the upper triangular part of a (including its diagonal) contains
U and the strictly lower triangular part of a contains the multipliers, I − L;

gefa returns 0 if successful. Otherwise it encountered a zero diagonal element during
the factorization. In this case it returns the column index (numbered from one) at which
it encountered the zero;

• gesl

gesl(a,n,p,b) solves the n by n linear system ax = b. It assumes that a has been LU
factored and the pivot array p has been set by a successful call to gefa(a,n,p). The solution
x is written into the b array;

• denzero

denzero(a,n) sets all the elements of the n by n dense matrix a to be 0.0;

• dencopy

dencopy(a,b,n) copies the n by n dense matrix a into the n by n dense matrix b;

• denscale

denscale(c,a,n) scales every element in the n by n dense matrix a by c;

• denaddI

denaddI(a,n) increments the n by n dense matrix a by the identity matrix;

• denfreepiv

denfreepiv(p) frees the pivot array p allocated by denallocpiv;

• denfree

denfree(a) frees the dense matrix a allocated by denalloc;

• denprint

denprint(a,n) prints the n by n dense matrix a to standard output as it would normally
appear on paper. It is intended as a debugging tool with small values of n. The elements are
printed using the %g option. A blank line is printed before and after the matrix.

107

13.2 The band Module

Type BandMat. The type BandMat is the type of a large band matrix A (possibly distributed). It
is defined to be a pointer to a structure defined by:

typedef struct {

integertype size;

integertype mu, ml, smu;

realtype **data;

} *BandMat;

The fields in the above structure are:

• size is the number of columns (which is the same as the number of rows);

• mu is the upper half-bandwidth, 0 ≤ mu ≤ size−1;

• ml is the lower half-bandwidth, 0 ≤ ml ≤ size−1;

• smu is the storage upper half-bandwidth, mu ≤ smu ≤ size−1. The BandFactor routine
writes the LU factors into the storage for A. The upper triangular factor U, however, may
have an upper half-bandwidth as big as min(size−1,mu+ml) because of partial pivoting. The
smu field holds the upper half-bandwidth allocated for A.

• data is a two dimensional array used for component storage. The elements of a band matrix
of type BandMat are stored columnwise (i.e. columns are stored one on top of the other in
memory). Only elements within the specified half-bandwidths are stored.

If we number rows and columns in the band matrix starting from 0, then

– data[0] is a pointer to (smu+ml+1)*size contiguous locations which hold the elements
within the band of A

– data[j] is a pointer to the uppermost element within the band in the j-th column. This
pointer may be treated as an array indexed from smu−mu (to access the uppermost
element within the band in the j-th column) to smu+ml (to access the lowest element
within the band in the j-th column). Indices from 0 to smu−mu−1 give access to extra
storage elements required by BandFactor.

– data[j][i-j+smu] is the (i,j)-th element, j−mu ≤ i ≤ j+ml.

The macros below allow a user to access individual matrix elements without writing out explicit
data structure references and without knowing too much about the underlying element storage. The
only storage assumption needed is that elements are stored columnwise and that a pointer into the
j-th column of elements can be obtained via the BAND COL macro. Users should use these macros
whenever possible.

See Figure 4 for a diagram of the BandMat type.

108

A (type BandMat)

size data

N

mu ml smu

data[0]

data[1]

data[j]

data[j+1]

data[N−1]

data[j][smu−mu]

data[j][smu]

data[j][smu+ml]

mu+ml+1

smu−mu

A(j−mu−1,j)

A(j−mu,j)

A(j,j)

A(j+ml,j)

Figure 4: Diagram of the storage for a band matrix of type BandMat. Here A is an N × N
band matrix of type BandMat with upper and lower half-bandwidths mu and ml, respectively. The
rows and columns of A are numbered from 0 to N − 1 and the (i, j)-th element of A is denoted
A(i,j). The greyed out areas of the underlying component storage are used by the BandFactor

and BandBacksolve routines.

109

Accessor Macros. The following three macros are defined by the band module to provide access
to data in the BandMat type:

• BAND ELEM

Usage : BAND ELEM(A,i,j) = a ij; or a ij = BAND ELEM(A,i,j);

BAND ELEM references the (i,j)-th element of the N × N band matrix A, where 0 ≤ i, j
≤ N − 1. The location (i,j) should further satisfy j−(A->mu) ≤ i ≤ j+(A->ml).

• BAND COL

Usage : col j = BAND COL(A,j);

BAND COL references the diagonal element of the j-th column of the N×N band matrix A, 0 ≤
j ≤ N − 1. The type of the expression BAND COL(A,j) is realtype *. The pointer returned
by the call BAND COL(A,j) can be treated as an array which is indexed from −(A->mu) to
(A->ml).

• BAND COL ELEM

Usage : BAND COL ELEM(col j,i,j) = a ij; or a ij = BAND COL ELEM(col j,i,j);

This macro references the (i,j)-th entry of the band matrix A when used in conjunction
with BAND COL to reference the j-th column through col j. The index (i,j) should satisfy
j−(A->mu) ≤ i ≤ j+(A->ml).

Functions. The following functions for BandMat matrices are available in the band package. For
full details, see the header file band.h.

• BandAllocMat: allocation of a BandMat matrix;

• BandAllocPiv: allocation of a pivot array for use with BandFactor/BandBacksolve;

• BandFactor: LU factorization with partial pivoting;

• BandBacksolve: solution of Ax = b using LU factorization;

• BandZero: load a matrix with zeros;

• BandCopy: copy one matrix to another;

• BandScale: scale a matrix by a scalar;

• BandAddI: increment a matrix by the identity matrix;

• BandFreeMat: free memory for a BandMat matrix;

• BandFreePiv: free memory for a pivot array;

• BandPrint: print a BandMat matrix to standard output.

110

13.3 The spgmr Module

The spgmr package, in the files spgmr.h and spgmr.c, includes an implementation of the scaled
preconditioned GMRES method. A separate code module, iterativ.h and iterativ.c, contains
auxiliary functions that support spgmr, and also other Krylov solvers to be added later. For full
details, including usage instructions, see the files spgmr.h and iterativ.h.

Functions. The following functions are available in the spgmr package:

• SpgmrMalloc: allocation of memory for SpgmrSolve;

• SpgmrSolve: solution of Ax = b by the spgmr method;

• SpgmrFree: free memory allocated by SpgmrMalloc.

The following functions are available in the support package iterativ.h and iterativ.c:

• ModifiedGS: performs modified Gram-Schmidt procedure;

• ClassicalGS: performs classical Gram-Schmidt procedure;

• QRfact: performs QR factorization of Hessenberg matrix;

• QRsol: solves a least squares problem with a Hessenberg matrix factored by QRfact.

111

References

[1] P. N. Brown, G. D. Byrne, and A. C. Hindmarsh, VODE, a Variable-Coefficient ODE Solver,
SIAM J. Sci. Stat. Comput., 10 (1989), pp. 1038–1051.

[2] P. N. Brown and A. C. Hindmarsh, Reduced Storage Matrix Methods in Stiff ODE Systems, J.
Appl. Math. & Comp. 31 (1989), pp. 40–91.

[3] G. D. Byrne, Pragmatic Experiments with Krylov Methods in the Stiff ODE Setting, in Compu-
tational Ordinary Differential Equations, J. R. Cash and I. Gladwell (Eds.), Oxford University
Press, Oxford, 1992, pp. 323–356.

[4] G. D. Byrne and A. C. Hindmarsh, PVODE, An ODE Solver for Parallel Computers, Intl. J.
High Perf. Comput. Apps., 1999, 13(4), pp. 254–365.

[5] Y. Cao, S. Li, L. R. Petzold, and R. Serban, Adjoint Sensitivity Analysis for Differential-
Algebraic Equations: The Adjoint DAE and its Numerical Solution, SIAM J. Sci. Comp., to
appear.

[6] M. Carcotsios and W. E. Stewart, Sensitivity Analysis of Initial Value Problems with Mixed
ODEs and Algebraic Constraints, Comput. Chem. Eng., 1985, 9, pp. 359–365.

[7] S. D. Cohen and A. C. Hindmarsh, CVODE User Guide, LLNL Report UCRL-MA-118618,
Sept. 1994

[8] S. D. Cohen and A. C. Hindmarsh, CVODE, a Stiff/Nonstiff ODE Solver in C, Computers in
Physics. 10(2) (1996), pp. 138-143.

[9] W. F. Feehery, J. E. Tolsma, and P. I. Barton, Efficient Sensitivity Analysis of Large-Scale
Differential-Algebraic Systems, Appl. Num. Math., 1997, 25, pp. 41–54.

[10] A. C. Hindmarsh, Detecting Stability Barriers in BDF Solvers, in Computational Ordinary
Differential Equations, J. R. Cash and I. Gladwell (Eds.), Oxford Univ. Press, 1992, pp. 87-96.
Also available as LLNL Report UCRL-101197, June 1989.

[11] A. C. Hindmarsh, Avoiding BDF Stability Barriers in the MOL Solution of Advection-
Dominated Problems, Appl. Num. Math., 1995, 17, pp. 311-318.

[12] A. C. Hindmarsh and A. G. Taylor, PVODE and KINSOL: Parallel Software for Differential
and Nonlinear Systems, LLNL Report UCRL-ID-129739, February 1998.

[13] T. Maly and L. R. Petzold, Numerical Methods and Software for Sensitivity Analysis of
Differential-Algebraic Systems, Appl. Numer. Math., 1996, 20, pp. 57–79.

[14] K. Radhakrishnan and A. C. Hindmarsh, Description and Use of LSODE, the Livermore
Solver for Ordinary Differential Equations, NASA Reference Publication 1327, 1993, and LLNL
Report UCRL-ID-113855, March 1994.

[15] Y. Saad and M. H. Schultz, GMRES: A Generalized Minimal Residual Algorithm for Solving
Nonsymmetric Linear Systems, SIAM J. Sci. Stat. Comp. 7 (1986), pp. 856–869.

112

Index

A
ADAMS . 22, 30, 31
Adams method . 4
adjoint sensitivity analysis

check-pointing . 11
examplessee examples, adjoint sensitivity
implementation in cvodes 12, 15
mathematical background 10–12
right hand side evaluation 57–58

ALLSENS . 46, 50

B
BAD DKY . 31, 48, 49
BAD IS .49
BAD K . 29, 48
BAD T . 29, 47
band generic linear solver

functions . 110
macros . 110
type BandMat .108

BAND COL . 35, 110
BAND COL ELEM . 35, 110
BAND ELEM .35, 110
BAND LIW . 25
BAND LRW . 25
BAND NJE . 25
BandMat . 19, 35, 59, 108
BDF . 22, 30, 31
BDF method . 4

C
CONV FAILURE . 28
CVadjCheckPointsList 57
CVadjFree . 57
CVadjMalloc . 53, 54
cvband linear solver

Jacobian approximation used by 25
memory requirements25
nvector compatibility 25, 33
optional outputs . 25
reinitialization . 33
selection of . 24–25
usage with adjoint module 55–56

CVBand . 22, 23, 24, 35
CVBandB . 56, 58
CVBandDQJac .25, 56
CVBandJacFn .35
CVBandJacFnB .58
cvbandpre preconditioner

description . 38
usage . 39
usage with adjoint module 60–61

CVBandPreAlloc .39
CVBandPrecon . 39
CVBandPreFree . 39
CVBandPSol . 39
CVBBD IPWSIZE . 42
CVBBD NGE . 42
CVBBD RPWSIZE . 42
CVBBDAlloc . 41
CVBBDFree .42
cvbbdpre preconditioner

additional user-supplied functions41
description . 40–41
optional output . 42
usage . 41–42

CVBBDPrecon . 41
CVBBDPSol .41
CVBM NO MEM . 55
cvdense linear solver

Jacobian approximation used by 24
memory requirements24
nvector compatibility 24, 33
optional outputs . 24
reinitialization . 32–33
selection of . 23–24
usage with adjoint module 55

CVDense . 22, 23, 24, 34
CVDenseB . 58
CVDenseDQJac . 24, 55
CVDenseJacFn .34
CVDenseJacFnB . 58
cvdiag linear solver

Jacobian approximation used by 26
memory requirements26

113

optional outputs . 26
selection of . 25–26

CVDiag .22, 23, 25
cvode . 1
CVode . 22, 28, 44
CVODE NO MEM . 28
cvodea.h . 52
CVodeB . 53, 56
CVodeDky . 29
CVodeF . 53, 54
CVODEF MEM FAIL . 54
CVodeFree . 22, 45
CVodeMalloc22, 31, 43, 52
CVodeMallocB . 53, 54
CVodeMemExtract . 48
cvodes

brief description of .1
motivation for writing in C 1–2
package structure . 15
relationship to cvode, pvode 1
relationship to vode, vodpk 1

cvodes linear solvers
built on generic solvers 23
cvband . 24, 33
cvdense . 23, 32
cvdiag .25
cvspgmr . 26, 33
header files . 19
implementation details.17
list of. .15
nvector compatibility 19
reinitializing one. .32
selecting one. .23
usage with adjoint module 55

cvodes.h . 19
CVodeSensDky .49
CVodeSensDkyAll . 48
CVodeSensExtract 44, 47
CVodeSensMalloc 44, 45, 49
CVReInit .31, 32
CVReInitBand .33
CVReInitDense . 32
CVReInitSpgmr . 33
cvsband.h .19
cvsdense.h . 19

cvsdiag.h .19
CVSensReInit .49
CVSensRhs1DQ . 46, 50
CVSensRhsDQ .46, 50
cvspgmr linear solver

Jacobian approximation used by 27
memory requirements27
optional inputs . 27
optional outputs . 27
preconditioner setup routine 27, 37
preconditioner solve routine 27, 36
reinitialization . 33
selection of . 26
usage with adjoint module 56

CVSpgmr . 22, 23, 26
CVSpgmrB .56, 61
CVSpgmrDQJtimes . 27, 56
CVSpgmrJtimesFn . 36
CVSpgmrJtimesFnB .59
CVSpgmrPrecondFn .37
CVSpgmrPrecondFnB .60
CVSpgmrPSolveFn . 36
CVSpgmrPSolveFnB .60
cvsspgmr.h . 20

D
denaddI . 107
denalloc . 106
denallocpiv .106
dencopy . 107
denfree . 107
denfreepiv .107
denprint . 107
denscale . 107
dense generic linear solver

functions
large matrix . 106
small matrix 106–107

macros. .105–106
type DenseMat . 105

DENSE COL .34, 106
DENSE ELEM . 34, 105
DENSE LIW . 24
DENSE LRW . 24
DENSE NJE . 24

114

DenseMat . 19, 34, 58, 105
denzero . 107
DIAG LIW . 26
DIAG LRW . 26
DKY NO MEM . 31, 47
DKY NO SENSI . 47

E
ERR FAILURE .28
error control . 5–6, 8
examples, adjoint sensitivity

list of. .82
parallel sample program
code pvanx.c 179–189
explanation of.86–87
output . 87–88
problem solved by.85–86

serial sample program
code cvadx.c 172–178
explanation of.83–84
output . 84–85
problem solved by 83
user-defined accessor macros 83

examples, forward sensitivity
list of. .69
parallel sample program
code pvfkx.c 150–171
explanation of.75–76
output . 76–81
problem solved by 75

serial sample program
code cvfdx.c 142–149
explanation of.70–71
output . 71–75
problem solved by.69–70
user data . 70

examples, simulation
list of . 62–63
parallel sample program
code pvkx.c 123–141
explanation of . 66
output . 66–68
problem solved by.65–66

serial sample program
code cvdx.c 118–122

explanation of.63–65
output . 65
problem solved by 63
user-defined accessor macros 63–65

F
forward sensitivity analysis

absolute tolerance selection 8
correction strategies 6–8, 15, 45
examples.see examples, forward

sensitivity
mathematical background 6–9
right hand side evaluation 8–9, 46, 50–51

FULL .46
FUNCTIONAL . 22, 30

G
gefa . 107
generic linear solvers

band .108
dense . 105
spgmr . 111
use in cvodes . 17

gesl . 107
GMRES method . 27, 111
Gram-Schmidt procedure 27

I
ILL INPUT . 28
interpolated output 29, 48
iopt .23, 29, 30, 32, 47

J
Jacobian approximation routine

band
difference quotient 25
user-supplied 25, 35–36

dense
difference quotient 24
user-supplied 24, 34–35

Jacobian times vector
difference quotient 27
user-supplied 27, 36

L
LIN ILL INPUT. .33
LINIT ERR . 102

115

LINIT OK . 102
LMEM FAIL . 32, 33
lsode . 1

M
M Env . 19, 91, 91
M EnvFree Parallel22, 98
M EnvFree Serial . 22, 95
M EnvInit Parallel20, 98
M EnvInit Serial . 20, 95
maxord . 31
ME CONTENT P . 98
ME CONTENT S . 96
MEXT NO MEM . 48
MPI . 3, 97, 98

N
N Vector . 19, 91, 91
N VFree . 22
N VFree S . 44
N VNew .20
N VNew S . 44
NEWTON . 22, 30, 31
NORMAL .22, 53
NV CONTENT P . 98
NV CONTENT S . 96
NV DATA P . 98
NV DATA S . 96
NV DISPOSE P . 99
NV DISPOSE S . 96
NV GLOBLENGTH P .98
NV Ith P . 99
NV Ith S . 96
NV LENGTH S .96
NV LOCLENGTH P . 98
NV MAKE P . 99
NV MAKE S . 96
nvector.h .19
nvector parallel.h . 19
nvector serial.h .19
NVS DISPOSE P . 99
NVS DISPOSE S . 96
NVS MAKE P .99
NVS MAKE S .96

O
OKAY . 29, 48
ONE STEP . 22, 53
ONESENS . 46, 51

P
PARTIAL . 46
preconditioning

advice on . 15, 26
setup and solve phases 15

pvode . 1

R
RCONST . 89
reinitialization. .31, 32, 49
RhsFn . 34
RhsFnB .57
right hand side function

adjoint backward problem 57–58
forward sensitivity 50–51
initial value problem. 34

ropt . 23, 29, 31

S
SCVM ILL INPUT . 47
SCVM MEM FAIL. .47
SCVM NO MEM . 47
SCVREI ILL INPUT . 49
SCVREI MEM FAIL . 49
SCVREI NO MEM. .49
SCVREI NO SENSI . 49
SensRhs1Fn . 46, 51
SensRhsFn .46, 50
SETUP FAILURE . 29
SIMULTANEOUS . 15, 45, 50
SOLVE FAILURE . 29
spgmr generic linear solver

description of. .111
functions . 27–28, 111
support functions.111

SPGMR LIW . 27
SPGMR LRW . 27
SPGMR NCFL . 27
SPGMR NLI . 27
SPGMR NPE . 27
SPGMR NPS . 27

116

SS . 23, 46
STAGGERED . 15, 45, 50
STAGGERED1 15, 45, 48, 51
SUCCESS 28, 32, 33, 47, 49, 54, 55
sundialstypes.h . 19, 89
SV . 23, 46

T
TOO MUCH ACC . 28
TOO MUCH WORK. .28
TSTOP RETURN . 28, 54, 57

V
vode . 1
vodpk .1

117

A Listings of cvodes IVP Solution Examples

A.1 A Serial Sample Problem - cvdx.c

/**

* *

* File : cvdx.c *

* Programmers: Scott D. Cohen and Alan C. Hindmarsh @LLNL *

* Version of : 5 March 2002 *

--

* Modified by R. Serban to work with new serial nvector (5/3/2002) *

--

* Example problem. *

* The following is a simple example problem, with the coding *

* needed for its solution by CVODE. The problem is from chemical *

* kinetics, and consists of the following three rate equations.. *

* dy1/dt = -.04*y1 + 1.e4*y2*y3 *

* dy2/dt = .04*y1 - 1.e4*y2*y3 - 3.e7*(y2)^2 *

* dy3/dt = 3.e7*(y2)^2 *

* on the interval from t = 0.0 to t = 4.e10, with initial conditions *

* y1 = 1.0, y2 = y3 = 0. The problem is stiff. *

* This program solves the problem with the BDF method, Newton *

* iteration with the CVODE dense linear solver, and a user-supplied *

* Jacobian routine. *

* It uses a scalar relative tolerance and a vector absolute tolerance. *

* Output is printed in decades from t = .4 to t = 4.e10. *

* Run statistics (optional outputs) are printed at the end. *

**/

#include <stdio.h>

/* CVODE header files with a description of contents used in cvdx.c */

#include "sundialstypes.h" /* definitions of types realtype and */

/* integertype, and the constant FALSE */

#include "cvodes.h" /* prototypes for CVodeMalloc, CVode, and CVodeFree, */

/* constants OPT_SIZE, BDF, NEWTON, SV, SUCCESS, */

/* NST, NFE, NSETUPS, NNI, NCFN, NETF */

#include "cvsdense.h" /* prototype for CVDense, constant DENSE_NJE */

#include "nvector_serial.h" /* definitions of type N_Vector and macro NV_Ith_S, */

/* prototypes for N_VNew, N_VFree */

#include "dense.h" /* definitions of type DenseMat, macro DENSE_ELEM */

/* User-defined vector and matrix accessor macros: Ith, IJth */

/* These macros are defined in order to write code which exactly matches

the mathematical problem description given above.

Ith(v,i) references the ith component of the vector v, where i is in

118

the range [1..NEQ] and NEQ is defined below. The Ith macro is defined

using the N_VIth macro in nvector.h. N_VIth numbers the components of

a vector starting from 0.

IJth(A,i,j) references the (i,j)th element of the dense matrix A, where

i and j are in the range [1..NEQ]. The IJth macro is defined using the

DENSE_ELEM macro in dense.h. DENSE_ELEM numbers rows and columns of a

dense matrix starting from 0. */

#define Ith(v,i) NV_Ith_S(v,i-1) /* Ith numbers components 1..NEQ */

#define IJth(A,i,j) DENSE_ELEM(A,i-1,j-1) /* IJth numbers rows,cols 1..NEQ */

/* Problem Constants */

#define NEQ 3 /* number of equations */

#define Y1 1.0 /* initial y components */

#define Y2 0.0

#define Y3 0.0

#define RTOL 1e-4 /* scalar relative tolerance */

#define ATOL1 1e-8 /* vector absolute tolerance components */

#define ATOL2 1e-14

#define ATOL3 1e-6

#define T0 0.0 /* initial time */

#define T1 0.4 /* first output time */

#define TMULT 10.0 /* output time factor */

#define NOUT 12 /* number of output times */

/* Private Helper Function */

static void PrintFinalStats(long int iopt[]);

/* Functions Called by the CVODE Solver */

static void f(integertype N, realtype t, N_Vector y, N_Vector ydot, void *f_data);

static void Jac(integertype N, DenseMat J, RhsFn f, void *f_data, realtype t,

N_Vector y, N_Vector fy, N_Vector ewt, realtype h,

realtype uround, void *jac_data, long int *nfePtr,

N_Vector vtemp1, N_Vector vtemp2, N_Vector vtemp3);

/***************************** Main Program ******************************/

int main()

{

M_Env machEnv;

realtype ropt[OPT_SIZE], reltol, t, tout;

long int iopt[OPT_SIZE];

N_Vector y, abstol;

119

void *cvode_mem;

int iout, flag;

/* Initialize serial machine environment */

machEnv = M_EnvInit_Serial(NEQ);

y = N_VNew(NEQ, machEnv); /* Allocate y, abstol vectors */

abstol = N_VNew(NEQ, machEnv);

Ith(y,1) = Y1; /* Initialize y */

Ith(y,2) = Y2;

Ith(y,3) = Y3;

reltol = RTOL; /* Set the scalar relative tolerance */

Ith(abstol,1) = ATOL1; /* Set the vector absolute tolerance */

Ith(abstol,2) = ATOL2;

Ith(abstol,3) = ATOL3;

/* Call CVodeMalloc to initialize CVODE:

NEQ is the problem size = number of equations

f is the user’s right hand side function in y’=f(t,y)

T0 is the initial time

y is the initial dependent variable vector

BDF specifies the Backward Differentiation Formula

NEWTON specifies a Newton iteration

SV specifies scalar relative and vector absolute tolerances

&reltol is a pointer to the scalar relative tolerance

abstol is the absolute tolerance vector

FALSE indicates there are no optional inputs in iopt and ropt

iopt is an array used to communicate optional integertype input and output

ropt is an array used to communicate optional realtype input and output

A pointer to CVODE problem memory is returned and stored in cvode_mem. */

cvode_mem = CVodeMalloc(NEQ, f, T0, y, BDF, NEWTON, SV, &reltol, abstol,

NULL, NULL, FALSE, iopt, ropt, machEnv);

if (cvode_mem == NULL) { printf("CVodeMalloc failed.\n"); return(1); }

/* Call CVDense to specify the CVODE dense linear solver with the

user-supplied Jacobian routine Jac. */

flag = CVDense(cvode_mem, Jac, NULL);

if (flag != SUCCESS) { printf("CVDense failed.\n"); return(1); }

/* In loop over output points, call CVode, print results, test for error */

printf(" \n3-species kinetics problem\n\n");

for (iout=1, tout=T1; iout <= NOUT; iout++, tout *= TMULT) {

flag = CVode(cvode_mem, tout, y, &t, NORMAL);

printf("At t = %0.4e y =%14.6e %14.6e %14.6e\n",

120

t, Ith(y,1), Ith(y,2), Ith(y,3));

if (flag != SUCCESS) { printf("CVode failed, flag=%d.\n", flag); break; }

}

N_VFree(y); /* Free the y and abstol vectors */

N_VFree(abstol);

CVodeFree(cvode_mem); /* Free the CVODE problem memory */

M_EnvFree_Serial(machEnv); /* Free the machine environment memory */

PrintFinalStats(iopt); /* Print some final statistics */

return(0);

}

/************************ Private Helper Function ************************/

/* Print some final statistics located in the iopt array */

static void PrintFinalStats(long int iopt[])

{

printf("\nFinal Statistics.. \n\n");

printf("nst = %-6ld nfe = %-6ld nsetups = %-6ld nje = %ld\n",

iopt[NST], iopt[NFE], iopt[NSETUPS], iopt[DENSE_NJE]);

printf("nni = %-6ld ncfn = %-6ld netf = %ld\n \n",

iopt[NNI], iopt[NCFN], iopt[NETF]);

}

/***************** Functions Called by the CVODE Solver ******************/

/* f routine. Compute f(t,y). */

static void f(integertype N, realtype t, N_Vector y, N_Vector ydot, void *f_data)

{

realtype y1, y2, y3, yd1, yd3;

y1 = Ith(y,1); y2 = Ith(y,2); y3 = Ith(y,3);

yd1 = Ith(ydot,1) = -0.04*y1 + 1e4*y2*y3;

yd3 = Ith(ydot,3) = 3e7*y2*y2;

Ith(ydot,2) = -yd1 - yd3;

}

/* Jacobian routine. Compute J(t,y). */

static void Jac(integertype N, DenseMat J, RhsFn f, void *f_data, realtype t,

N_Vector y, N_Vector fy, N_Vector ewt, realtype h,

realtype uround, void *jac_data, long int *nfePtr,

N_Vector vtemp1, N_Vector vtemp2, N_Vector vtemp3)

{

realtype y1, y2, y3;

121

y1 = Ith(y,1); y2 = Ith(y,2); y3 = Ith(y,3);

IJth(J,1,1) = -0.04; IJth(J,1,2) = 1e4*y3; IJth(J,1,3) = 1e4*y2;

IJth(J,2,1) = 0.04; IJth(J,2,2) = -1e4*y3-6e7*y2; IJth(J,2,3) = -1e4*y2;

IJth(J,3,2) = 6e7*y2;

}

122

A.2 A Parallel Sample Program - pvkx.c

/**

* *

* File : pvkx.c *

* Programmers: S. D. Cohen, A. C. Hindmarsh, M. R. Wittman @ LLNL *

* Version of : 6 March 2002 *

--

* Modified by R. Serban to work with new parallel nvector (6/3/2002) *

--

* Example problem. *

* An ODE system is generated from the following 2-species diurnal *

* kinetics advection-diffusion PDE system in 2 space dimensions: *

* *

* dc(i)/dt = Kh*(d/dx)^2 c(i) + V*dc(i)/dx + (d/dy)(Kv(y)*dc(i)/dy) *

* + Ri(c1,c2,t) for i = 1,2, where *

* R1(c1,c2,t) = -q1*c1*c3 - q2*c1*c2 + 2*q3(t)*c3 + q4(t)*c2 , *

* R2(c1,c2,t) = q1*c1*c3 - q2*c1*c2 - q4(t)*c2 , *

* Kv(y) = Kv0*exp(y/5) , *

* Kh, V, Kv0, q1, q2, and c3 are constants, and q3(t) and q4(t) *

* vary diurnally. The problem is posed on the square *

* 0 <= x <= 20, 30 <= y <= 50 (all in km), *

* with homogeneous Neumann boundary conditions, and for time t in *

* 0 <= t <= 86400 sec (1 day). *

* The PDE system is treated by central differences on a uniform *

* mesh, with simple polynomial initial profiles. *

* *

* The problem is solved by CVODE on NPE processors, treated as a *

* rectangular process grid of size NPEX by NPEY, with NPE = NPEX*NPEY. *

* Each processor contains a subgrid of size MXSUB by MYSUB of the *

* (x,y) mesh. Thus the actual mesh sizes are MX = MXSUB*NPEX and *

* MY = MYSUB*NPEY, and the ODE system size is neq = 2*MX*MY. *

* *

* The solution with CVODE is done with the BDF/GMRES method (i.e. *

* using the CVSPGMR linear solver) and the block-diagonal part of the *

* Newton matrix as a left preconditioner. A copy of the block-diagonal *

* part of the Jacobian is saved and conditionally reused within the *

* Precond routine. *

* *

* Performance data and sampled solution values are printed at selected *

* output times, and all performance counters are printed on completion.*

* *

* This version uses MPI for user routines, and the MPI_PVODE solver. *

* Execution: pvkx -npes N with N = NPEX*NPEY (see constants below). *

**/

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include "sundialstypes.h" /* definitions of realtype, integertype, */

/* booleantype, and consants TRUE, FALSE */

123

#include "cvodes.h" /* main CVODE header file */

#include "iterativ.h" /* contains the enum for types of preconditioning */

#include "cvsspgmr.h" /* use CVSPGMR linear solver each internal step */

#include "smalldense.h" /* use generic DENSE solver in preconditioning */

#include "nvector_parallel.h" /* definitions of type N_Vector, macro NV_DATA_P */

#include "sundialsmath.h" /* contains SQR macro */

#include "mpi.h"

/* Problem Constants */

#define NVARS 2 /* number of species */

#define KH 4.0e-6 /* horizontal diffusivity Kh */

#define VEL 0.001 /* advection velocity V */

#define KV0 1.0e-8 /* coefficient in Kv(y) */

#define Q1 1.63e-16 /* coefficients q1, q2, c3 */

#define Q2 4.66e-16

#define C3 3.7e16

#define A3 22.62 /* coefficient in expression for q3(t) */

#define A4 7.601 /* coefficient in expression for q4(t) */

#define C1_SCALE 1.0e6 /* coefficients in initial profiles */

#define C2_SCALE 1.0e12

#define T0 0.0 /* initial time */

#define NOUT 12 /* number of output times */

#define TWOHR 7200.0 /* number of seconds in two hours */

#define HALFDAY 4.32e4 /* number of seconds in a half day */

#define PI 3.1415926535898 /* pi */

#define XMIN 0.0 /* grid boundaries in x */

#define XMAX 20.0

#define YMIN 30.0 /* grid boundaries in y */

#define YMAX 50.0

#define NPEX 2 /* no. PEs in x direction of PE array */

#define NPEY 2 /* no. PEs in y direction of PE array */

/* Total no. PEs = NPEX*NPEY */

#define MXSUB 5 /* no. x points per subgrid */

#define MYSUB 5 /* no. y points per subgrid */

#define MX (NPEX*MXSUB) /* MX = number of x mesh points */

#define MY (NPEY*MYSUB) /* MY = number of y mesh points */

/* Spatial mesh is MX by MY */

/* CVodeMalloc Constants */

#define RTOL 1.0e-5 /* scalar relative tolerance */

#define FLOOR 100.0 /* value of C1 or C2 at which tolerances */

/* change from relative to absolute */

#define ATOL (RTOL*FLOOR) /* scalar absolute tolerance */

124

/* User-defined matrix accessor macro: IJth */

/* IJth is defined in order to write code which indexes into small dense

matrices with a (row,column) pair, where 1 <= row,column <= NVARS.

IJth(a,i,j) references the (i,j)th entry of the small matrix realtype **a,

where 1 <= i,j <= NVARS. The small matrix routines in dense.h

work with matrices stored by column in a 2-dimensional array. In C,

arrays are indexed starting at 0, not 1. */

#define IJth(a,i,j) (a[j-1][i-1])

/* Type : UserData

contains problem constants, preconditioner blocks, pivot arrays,

grid constants, and processor indices */

typedef struct {

realtype q4, om, dx, dy, hdco, haco, vdco;

realtype uext[NVARS*(MXSUB+2)*(MYSUB+2)];

integertype my_pe, isubx, isuby, nvmxsub, nvmxsub2;

MPI_Comm comm;

} *UserData;

typedef struct {

void *f_data;

realtype **P[MXSUB][MYSUB], **Jbd[MXSUB][MYSUB];

integertype *pivot[MXSUB][MYSUB];

} *PreconData;

/* Private Helper Functions */

static PreconData AllocPreconData(UserData data);

static void InitUserData(int my_pe, MPI_Comm comm, UserData data);

static void FreePreconData(PreconData pdata);

static void SetInitialProfiles(N_Vector u, UserData data);

static void PrintOutput(integertype my_pe, MPI_Comm comm, long int iopt[],

realtype ropt[], N_Vector u, realtype t);

static void PrintFinalStats(long int iopt[]);

static void BSend(MPI_Comm comm, integertype my_pe, integertype isubx,

integertype isuby, integertype dsizex, integertype dsizey,

realtype udata[]);

static void BRecvPost(MPI_Comm comm, MPI_Request request[], integertype my_pe,

integertype isubx, integertype isuby,

integertype dsizex, integertype dsizey,

realtype uext[], realtype buffer[]);

static void BRecvWait(MPI_Request request[], integertype isubx, integertype isuby,

integertype dsizex, realtype uext[], realtype buffer[]);

static void ucomm(integertype N, realtype t, N_Vector u, UserData data);

125

static void fcalc(integertype N, realtype t, realtype udata[], realtype dudata[],

UserData data);

/* Functions Called by the CVODE Solver */

static void f(integertype N, realtype t, N_Vector u, N_Vector udot, void *f_data);

static int Precond(integertype N, realtype tn, N_Vector u, N_Vector fu,

booleantype jok, booleantype *jcurPtr,

realtype gamma, N_Vector ewt, realtype h,

realtype uround, long int *nfePtr, void *P_data,

N_Vector vtemp1, N_Vector vtemp2, N_Vector vtemp3);

static int PSolve(integertype N, realtype tn, N_Vector u, N_Vector fu,

N_Vector vtemp, realtype gamma, N_Vector ewt, realtype delta,

long int *nfePtr, N_Vector r, int lr, void *P_data, N_Vector z);

/***************************** Main Program ******************************/

int main(int argc, char *argv[])

{

M_Env machEnv;

realtype abstol, reltol, t, tout, ropt[OPT_SIZE];

long int iopt[OPT_SIZE];

N_Vector u;

UserData data;

PreconData predata;

void *cvode_mem;

int iout, flag, my_pe, npes;

integertype neq, local_N;

MPI_Comm comm;

/* Set problem size neq */

neq = NVARS*MX*MY;

/* Get processor number and total number of pe’s */

MPI_Init(&argc, &argv);

comm = MPI_COMM_WORLD;

MPI_Comm_size(comm, &npes);

MPI_Comm_rank(comm, &my_pe);

if (npes != NPEX*NPEY) {

if (my_pe == 0)

printf("\n npes=%d is not equal to NPEX*NPEY=%d\n", npes,NPEX*NPEY);

return(1);

}

/* Set local length */

126

local_N = NVARS*MXSUB*MYSUB;

/* Allocate and load user data block; allocate preconditioner block */

data = (UserData) malloc(sizeof *data);

InitUserData(my_pe, comm, data);

predata = AllocPreconData (data);

/* Set machEnv block */

machEnv = M_EnvInit_Parallel(comm, local_N, neq, &argc, &argv);

if (machEnv == NULL) return(1);

/* Allocate u, and set initial values and tolerances */

u = N_VNew(neq, machEnv);

SetInitialProfiles(u, data);

abstol = ATOL; reltol = RTOL;

/* Call CVodeMalloc to initialize CVODE:

neq is the problem size = number of equations

f is the user’s right hand side function in u’=f(t,u)

T0 is the initial time

u is the initial dependent variable vector

BDF specifies the Backward Differentiation Formula

NEWTON specifies a Newton iteration

SS specifies scalar relative and absolute tolerances

&reltol and &abstol are pointers to the scalar tolerances

data is the pointer to the user-defined block of coefficients

FALSE indicates there are no optional inputs in iopt and ropt

iopt and ropt arrays communicate optional integer and real input/output

A pointer to CVODE problem memory is returned and stored in cvode_mem. */

cvode_mem = CVodeMalloc(neq, f, T0, u, BDF, NEWTON, SS, &reltol,

&abstol, data, NULL, FALSE, iopt, ropt, machEnv);

if (cvode_mem == NULL) { printf("CVodeMalloc failed."); return(1); }

/* Call CVSpgmr to specify the CVODE linear solver CVSPGMR with

left preconditioning, modified Gram-Schmidt orthogonalization,

default values for the maximum Krylov dimension maxl and the tolerance

parameter delt, preconditioner setup and solve routines Precond and

PSolve, the pointer to the user-defined block data, and NULL for the

user jtimes routine and Jacobian data pointer. */

flag = CVSpgmr(cvode_mem, LEFT, MODIFIED_GS, 0, 0.0, Precond, PSolve,

predata, NULL, NULL);

if (flag != SUCCESS) { printf("CVSpgmr failed."); return(1); }

127

if (my_pe == 0)

printf("\n2-species diurnal advection-diffusion problem\n\n");

/* In loop over output points, call CVode, print results, test for error */

for (iout=1, tout = TWOHR; iout <= NOUT; iout++, tout += TWOHR) {

flag = CVode(cvode_mem, tout, u, &t, NORMAL);

PrintOutput(my_pe, comm, iopt, ropt, u, t);

if (flag != SUCCESS) {

if (my_pe == 0) printf("CVode failed, flag=%d.\n", flag);

break;

}

}

/* Free memory and print final statistics */

N_VFree(u);

free(data);

FreePreconData(predata);

CVodeFree(cvode_mem);

if (my_pe == 0) PrintFinalStats(iopt);

M_EnvFree_Parallel(machEnv);

MPI_Finalize();

return(0);

}

/*********************** Private Helper Functions ************************/

/* Allocate memory for data structure of type UserData */

static PreconData AllocPreconData(UserData fdata)

{

int lx, ly;

PreconData pdata;

pdata = (PreconData) malloc(sizeof *pdata);

pdata->f_data = fdata;

for (lx = 0; lx < MXSUB; lx++) {

for (ly = 0; ly < MYSUB; ly++) {

(pdata->P)[lx][ly] = denalloc(NVARS);

(pdata->Jbd)[lx][ly] = denalloc(NVARS);

(pdata->pivot)[lx][ly] = denallocpiv(NVARS);

}

}

return(pdata);

}

128

/* Load constants in data */

static void InitUserData(int my_pe, MPI_Comm comm, UserData data)

{

integertype isubx, isuby;

/* Set problem constants */

data->om = PI/HALFDAY;

data->dx = (XMAX-XMIN)/((realtype)(MX-1));

data->dy = (YMAX-YMIN)/((realtype)(MY-1));

data->hdco = KH/SQR(data->dx);

data->haco = VEL/(2.0*data->dx);

data->vdco = (1.0/SQR(data->dy))*KV0;

/* Set machine-related constants */

data->comm = comm;

data->my_pe = my_pe;

/* isubx and isuby are the PE grid indices corresponding to my_pe */

isuby = my_pe/NPEX;

isubx = my_pe - isuby*NPEX;

data->isubx = isubx;

data->isuby = isuby;

/* Set the sizes of a boundary x-line in u and uext */

data->nvmxsub = NVARS*MXSUB;

data->nvmxsub2 = NVARS*(MXSUB+2);

}

/* Free preconditioner data memory */

static void FreePreconData(PreconData pdata)

{

int lx, ly;

for (lx = 0; lx < MXSUB; lx++) {

for (ly = 0; ly < MYSUB; ly++) {

denfree((pdata->P)[lx][ly]);

denfree((pdata->Jbd)[lx][ly]);

denfreepiv((pdata->pivot)[lx][ly]);

}

}

free(pdata);

}

/* Set initial conditions in u */

static void SetInitialProfiles(N_Vector u, UserData data)

{

integertype isubx, isuby, lx, ly, jx, jy, offset;

129

realtype dx, dy, x, y, cx, cy, xmid, ymid;

realtype *udata;

/* Set pointer to data array in vector u */

udata = NV_DATA_P(u);

/* Get mesh spacings, and subgrid indices for this PE */

dx = data->dx; dy = data->dy;

isubx = data->isubx; isuby = data->isuby;

/* Load initial profiles of c1 and c2 into local u vector.

Here lx and ly are local mesh point indices on the local subgrid,

and jx and jy are the global mesh point indices. */

offset = 0;

xmid = .5*(XMIN + XMAX);

ymid = .5*(YMIN + YMAX);

for (ly = 0; ly < MYSUB; ly++) {

jy = ly + isuby*MYSUB;

y = YMIN + jy*dy;

cy = SQR(0.1*(y - ymid));

cy = 1.0 - cy + 0.5*SQR(cy);

for (lx = 0; lx < MXSUB; lx++) {

jx = lx + isubx*MXSUB;

x = XMIN + jx*dx;

cx = SQR(0.1*(x - xmid));

cx = 1.0 - cx + 0.5*SQR(cx);

udata[offset] = C1_SCALE*cx*cy;

udata[offset+1] = C2_SCALE*cx*cy;

offset = offset + 2;

}

}

}

/* Print current t, step count, order, stepsize, and sampled c1,c2 values */

static void PrintOutput(integertype my_pe, MPI_Comm comm, long int iopt[],

realtype ropt[], N_Vector u, realtype t)

{

realtype *udata, tempu[2];

integertype npelast, i0, i1;

MPI_Status status;

npelast = NPEX*NPEY - 1;

udata = NV_DATA_P(u);

/* Send c1,c2 at top right mesh point to PE 0 */

if (my_pe == npelast) {

i0 = NVARS*MXSUB*MYSUB - 2;

130

i1 = i0 + 1;

if (npelast != 0)

MPI_Send(&udata[i0], 2, PVEC_REAL_MPI_TYPE, 0, 0, comm);

else {

tempu[0] = udata[i0];

tempu[1] = udata[i1];

}

}

/* On PE 0, receive c1,c2 at top right, then print performance data

and sampled solution values */

if (my_pe == 0) {

if (npelast != 0)

MPI_Recv(&tempu[0], 2, PVEC_REAL_MPI_TYPE, npelast, 0, comm, &status);

printf("t = %.2e no. steps = %ld order = %ld stepsize = %.2e\n",

t, iopt[NST], iopt[QU], ropt[HU]);

printf("At bottom left: c1, c2 = %12.3e %12.3e \n", udata[0], udata[1]);

printf("At top right: c1, c2 = %12.3e %12.3e \n\n", tempu[0], tempu[1]);

}

}

/* Print final statistics contained in iopt */

static void PrintFinalStats(long int iopt[])

{

printf("\nFinal Statistics.. \n\n");

printf("lenrw = %5ld leniw = %5ld\n", iopt[LENRW], iopt[LENIW]);

printf("llrw = %5ld lliw = %5ld\n", iopt[SPGMR_LRW], iopt[SPGMR_LIW]);

printf("nst = %5ld nfe = %5ld\n", iopt[NST], iopt[NFE]);

printf("nni = %5ld nli = %5ld\n", iopt[NNI], iopt[SPGMR_NLI]);

printf("nsetups = %5ld netf = %5ld\n", iopt[NSETUPS], iopt[NETF]);

printf("npe = %5ld nps = %5ld\n", iopt[SPGMR_NPE], iopt[SPGMR_NPS]);

printf("ncfn = %5ld ncfl = %5ld\n \n", iopt[NCFN], iopt[SPGMR_NCFL]);

}

/* Routine to send boundary data to neighboring PEs */

static void BSend(MPI_Comm comm, integertype my_pe, integertype isubx,

integertype isuby, integertype dsizex, integertype dsizey,

realtype udata[])

{

int i, ly;

integertype offsetu, offsetbuf;

realtype bufleft[NVARS*MYSUB], bufright[NVARS*MYSUB];

/* If isuby > 0, send data from bottom x-line of u */

if (isuby != 0)

MPI_Send(&udata[0], dsizex, PVEC_REAL_MPI_TYPE, my_pe-NPEX, 0, comm);

/* If isuby < NPEY-1, send data from top x-line of u */

131

if (isuby != NPEY-1) {

offsetu = (MYSUB-1)*dsizex;

MPI_Send(&udata[offsetu], dsizex, PVEC_REAL_MPI_TYPE, my_pe+NPEX, 0, comm);

}

/* If isubx > 0, send data from left y-line of u (via bufleft) */

if (isubx != 0) {

for (ly = 0; ly < MYSUB; ly++) {

offsetbuf = ly*NVARS;

offsetu = ly*dsizex;

for (i = 0; i < NVARS; i++)

bufleft[offsetbuf+i] = udata[offsetu+i];

}

MPI_Send(&bufleft[0], dsizey, PVEC_REAL_MPI_TYPE, my_pe-1, 0, comm);

}

/* If isubx < NPEX-1, send data from right y-line of u (via bufright) */

if (isubx != NPEX-1) {

for (ly = 0; ly < MYSUB; ly++) {

offsetbuf = ly*NVARS;

offsetu = offsetbuf*MXSUB + (MXSUB-1)*NVARS;

for (i = 0; i < NVARS; i++)

bufright[offsetbuf+i] = udata[offsetu+i];

}

MPI_Send(&bufright[0], dsizey, PVEC_REAL_MPI_TYPE, my_pe+1, 0, comm);

}

}

/* Routine to start receiving boundary data from neighboring PEs.

Notes:

1) buffer should be able to hold 2*NVARS*MYSUB realtype entries, should be

passed to both the BRecvPost and BRecvWait functions, and should not

be manipulated between the two calls.

2) request should have 4 entries, and should be passed in both calls also. */

static void BRecvPost(MPI_Comm comm, MPI_Request request[], integertype my_pe,

integertype isubx, integertype isuby,

integertype dsizex, integertype dsizey,

realtype uext[], realtype buffer[])

{

integertype offsetue;

/* Have bufleft and bufright use the same buffer */

realtype *bufleft = buffer, *bufright = buffer+NVARS*MYSUB;

/* If isuby > 0, receive data for bottom x-line of uext */

if (isuby != 0)

MPI_Irecv(&uext[NVARS], dsizex, PVEC_REAL_MPI_TYPE,

132

my_pe-NPEX, 0, comm, &request[0]);

/* If isuby < NPEY-1, receive data for top x-line of uext */

if (isuby != NPEY-1) {

offsetue = NVARS*(1 + (MYSUB+1)*(MXSUB+2));

MPI_Irecv(&uext[offsetue], dsizex, PVEC_REAL_MPI_TYPE,

my_pe+NPEX, 0, comm, &request[1]);

}

/* If isubx > 0, receive data for left y-line of uext (via bufleft) */

if (isubx != 0) {

MPI_Irecv(&bufleft[0], dsizey, PVEC_REAL_MPI_TYPE,

my_pe-1, 0, comm, &request[2]);

}

/* If isubx < NPEX-1, receive data for right y-line of uext (via bufright) */

if (isubx != NPEX-1) {

MPI_Irecv(&bufright[0], dsizey, PVEC_REAL_MPI_TYPE,

my_pe+1, 0, comm, &request[3]);

}

}

/* Routine to finish receiving boundary data from neighboring PEs.

Notes:

1) buffer should be able to hold 2*NVARS*MYSUB realtype entries, should be

passed to both the BRecvPost and BRecvWait functions, and should not

be manipulated between the two calls.

2) request should have 4 entries, and should be passed in both calls also. */

static void BRecvWait(MPI_Request request[], integertype isubx, integertype isuby,

integertype dsizex, realtype uext[], realtype buffer[])

{

int i, ly;

integertype dsizex2, offsetue, offsetbuf;

realtype *bufleft = buffer, *bufright = buffer+NVARS*MYSUB;

MPI_Status status;

dsizex2 = dsizex + 2*NVARS;

/* If isuby > 0, receive data for bottom x-line of uext */

if (isuby != 0)

MPI_Wait(&request[0],&status);

/* If isuby < NPEY-1, receive data for top x-line of uext */

if (isuby != NPEY-1)

MPI_Wait(&request[1],&status);

/* If isubx > 0, receive data for left y-line of uext (via bufleft) */

if (isubx != 0) {

MPI_Wait(&request[2],&status);

133

/* Copy the buffer to uext */

for (ly = 0; ly < MYSUB; ly++) {

offsetbuf = ly*NVARS;

offsetue = (ly+1)*dsizex2;

for (i = 0; i < NVARS; i++)

uext[offsetue+i] = bufleft[offsetbuf+i];

}

}

/* If isubx < NPEX-1, receive data for right y-line of uext (via bufright) */

if (isubx != NPEX-1) {

MPI_Wait(&request[3],&status);

/* Copy the buffer to uext */

for (ly = 0; ly < MYSUB; ly++) {

offsetbuf = ly*NVARS;

offsetue = (ly+2)*dsizex2 - NVARS;

for (i = 0; i < NVARS; i++)

uext[offsetue+i] = bufright[offsetbuf+i];

}

}

}

/* ucomm routine. This routine performs all communication

between processors of data needed to calculate f. */

static void ucomm(integertype N, realtype t, N_Vector u, UserData data)

{

realtype *udata, *uext, buffer[2*NVARS*MYSUB];

MPI_Comm comm;

integertype my_pe, isubx, isuby, nvmxsub, nvmysub;

MPI_Request request[4];

udata = NV_DATA_P(u);

/* Get comm, my_pe, subgrid indices, data sizes, extended array uext */

comm = data->comm; my_pe = data->my_pe;

isubx = data->isubx; isuby = data->isuby;

nvmxsub = data->nvmxsub;

nvmysub = NVARS*MYSUB;

uext = data->uext;

/* Start receiving boundary data from neighboring PEs */

BRecvPost(comm, request, my_pe, isubx, isuby, nvmxsub, nvmysub, uext, buffer);

134

/* Send data from boundary of local grid to neighboring PEs */

BSend(comm, my_pe, isubx, isuby, nvmxsub, nvmysub, udata);

/* Finish receiving boundary data from neighboring PEs */

BRecvWait(request, isubx, isuby, nvmxsub, uext, buffer);

}

/* fcalc routine. Compute f(t,y). This routine assumes that communication

between processors of data needed to calculate f has already been done,

and this data is in the work array uext. */

static void fcalc(integertype N, realtype t, realtype udata[], realtype dudata[],

UserData data)

{

realtype *uext;

realtype q3, c1, c2, c1dn, c2dn, c1up, c2up, c1lt, c2lt;

realtype c1rt, c2rt, cydn, cyup, hord1, hord2, horad1, horad2;

realtype qq1, qq2, qq3, qq4, rkin1, rkin2, s, vertd1, vertd2, ydn, yup;

realtype q4coef, dely, verdco, hordco, horaco;

int i, lx, ly, jx, jy;

integertype isubx, isuby, nvmxsub, nvmxsub2, offsetu, offsetue;

/* Get subgrid indices, data sizes, extended work array uext */

isubx = data->isubx; isuby = data->isuby;

nvmxsub = data->nvmxsub; nvmxsub2 = data->nvmxsub2;

uext = data->uext;

/* Copy local segment of u vector into the working extended array uext */

offsetu = 0;

offsetue = nvmxsub2 + NVARS;

for (ly = 0; ly < MYSUB; ly++) {

for (i = 0; i < nvmxsub; i++) uext[offsetue+i] = udata[offsetu+i];

offsetu = offsetu + nvmxsub;

offsetue = offsetue + nvmxsub2;

}

/* To facilitate homogeneous Neumann boundary conditions, when this is

a boundary PE, copy data from the first interior mesh line of u to uext */

/* If isuby = 0, copy x-line 2 of u to uext */

if (isuby == 0) {

for (i = 0; i < nvmxsub; i++) uext[NVARS+i] = udata[nvmxsub+i];

}

135

/* If isuby = NPEY-1, copy x-line MYSUB-1 of u to uext */

if (isuby == NPEY-1) {

offsetu = (MYSUB-2)*nvmxsub;

offsetue = (MYSUB+1)*nvmxsub2 + NVARS;

for (i = 0; i < nvmxsub; i++) uext[offsetue+i] = udata[offsetu+i];

}

/* If isubx = 0, copy y-line 2 of u to uext */

if (isubx == 0) {

for (ly = 0; ly < MYSUB; ly++) {

offsetu = ly*nvmxsub + NVARS;

offsetue = (ly+1)*nvmxsub2;

for (i = 0; i < NVARS; i++) uext[offsetue+i] = udata[offsetu+i];

}

}

/* If isubx = NPEX-1, copy y-line MXSUB-1 of u to uext */

if (isubx == NPEX-1) {

for (ly = 0; ly < MYSUB; ly++) {

offsetu = (ly+1)*nvmxsub - 2*NVARS;

offsetue = (ly+2)*nvmxsub2 - NVARS;

for (i = 0; i < NVARS; i++) uext[offsetue+i] = udata[offsetu+i];

}

}

/* Make local copies of problem variables, for efficiency */

dely = data->dy;

verdco = data->vdco;

hordco = data->hdco;

horaco = data->haco;

/* Set diurnal rate coefficients as functions of t, and save q4 in

data block for use by preconditioner evaluation routine */

s = sin((data->om)*t);

if (s > 0.0) {

q3 = exp(-A3/s);

q4coef = exp(-A4/s);

} else {

q3 = 0.0;

q4coef = 0.0;

}

data->q4 = q4coef;

/* Loop over all grid points in local subgrid */

for (ly = 0; ly < MYSUB; ly++) {

jy = ly + isuby*MYSUB;

136

/* Set vertical diffusion coefficients at jy +- 1/2 */

ydn = YMIN + (jy - .5)*dely;

yup = ydn + dely;

cydn = verdco*exp(0.2*ydn);

cyup = verdco*exp(0.2*yup);

for (lx = 0; lx < MXSUB; lx++) {

jx = lx + isubx*MXSUB;

/* Extract c1 and c2, and set kinetic rate terms */

offsetue = (lx+1)*NVARS + (ly+1)*nvmxsub2;

c1 = uext[offsetue];

c2 = uext[offsetue+1];

qq1 = Q1*c1*C3;

qq2 = Q2*c1*c2;

qq3 = q3*C3;

qq4 = q4coef*c2;

rkin1 = -qq1 - qq2 + 2.0*qq3 + qq4;

rkin2 = qq1 - qq2 - qq4;

/* Set vertical diffusion terms */

c1dn = uext[offsetue-nvmxsub2];

c2dn = uext[offsetue-nvmxsub2+1];

c1up = uext[offsetue+nvmxsub2];

c2up = uext[offsetue+nvmxsub2+1];

vertd1 = cyup*(c1up - c1) - cydn*(c1 - c1dn);

vertd2 = cyup*(c2up - c2) - cydn*(c2 - c2dn);

/* Set horizontal diffusion and advection terms */

c1lt = uext[offsetue-2];

c2lt = uext[offsetue-1];

c1rt = uext[offsetue+2];

c2rt = uext[offsetue+3];

hord1 = hordco*(c1rt - 2.0*c1 + c1lt);

hord2 = hordco*(c2rt - 2.0*c2 + c2lt);

horad1 = horaco*(c1rt - c1lt);

horad2 = horaco*(c2rt - c2lt);

/* Load all terms into dudata */

offsetu = lx*NVARS + ly*nvmxsub;

dudata[offsetu] = vertd1 + hord1 + horad1 + rkin1;

dudata[offsetu+1] = vertd2 + hord2 + horad2 + rkin2;

}

}

137

}

/***************** Functions Called by the CVODE Solver ******************/

/* f routine. Evaluate f(t,y). First call ucomm to do communication of

subgrid boundary data into uext. Then calculate f by a call to fcalc. */

static void f(integertype N, realtype t, N_Vector u, N_Vector udot, void *f_data)

{

realtype *udata, *dudata;

UserData data;

udata = NV_DATA_P(u);

dudata = NV_DATA_P(udot);

data = (UserData) f_data;

/* Call ucomm to do inter-processor communication */

ucomm (N, t, u, data);

/* Call fcalc to calculate all right-hand sides */

fcalc (N, t, udata, dudata, data);

}

/* Preconditioner setup routine. Generate and preprocess P. */

static int Precond(integertype N, realtype tn, N_Vector u, N_Vector fu,

booleantype jok, booleantype *jcurPtr,

realtype gamma, N_Vector ewt, realtype h,

realtype uround, long int *nfePtr, void *P_data,

N_Vector vtemp1, N_Vector vtemp2, N_Vector vtemp3)

{

realtype c1, c2, cydn, cyup, diag, ydn, yup, q4coef, dely, verdco, hordco;

realtype **(*P)[MYSUB], **(*Jbd)[MYSUB];

integertype nvmxsub, *(*pivot)[MYSUB], ier, offset;

int lx, ly, jx, jy, isubx, isuby;

realtype *udata, **a, **j;

PreconData predata;

UserData data;

/* Make local copies of pointers in P_data, pointer to u’s data,

and PE index pair */

predata = (PreconData) P_data;

data = (UserData) (predata->f_data);

P = predata->P;

138

Jbd = predata->Jbd;

pivot = predata->pivot;

udata = NV_DATA_P(u);

isubx = data->isubx; isuby = data->isuby;

nvmxsub = data->nvmxsub;

if (jok) {

/* jok = TRUE: Copy Jbd to P */

for (ly = 0; ly < MYSUB; ly++)

for (lx = 0; lx < MXSUB; lx++)

dencopy(Jbd[lx][ly], P[lx][ly], NVARS);

*jcurPtr = FALSE;

}

else {

/* jok = FALSE: Generate Jbd from scratch and copy to P */

/* Make local copies of problem variables, for efficiency */

q4coef = data->q4;

dely = data->dy;

verdco = data->vdco;

hordco = data->hdco;

/* Compute 2x2 diagonal Jacobian blocks (using q4 values

computed on the last f call). Load into P. */

for (ly = 0; ly < MYSUB; ly++) {

jy = ly + isuby*MYSUB;

ydn = YMIN + (jy - .5)*dely;

yup = ydn + dely;

cydn = verdco*exp(0.2*ydn);

cyup = verdco*exp(0.2*yup);

diag = -(cydn + cyup + 2.0*hordco);

for (lx = 0; lx < MXSUB; lx++) {

jx = lx + isubx*MXSUB;

offset = lx*NVARS + ly*nvmxsub;

c1 = udata[offset];

c2 = udata[offset+1];

j = Jbd[lx][ly];

a = P[lx][ly];

IJth(j,1,1) = (-Q1*C3 - Q2*c2) + diag;

IJth(j,1,2) = -Q2*c1 + q4coef;

IJth(j,2,1) = Q1*C3 - Q2*c2;

IJth(j,2,2) = (-Q2*c1 - q4coef) + diag;

dencopy(j, a, NVARS);

139

}

}

*jcurPtr = TRUE;

}

/* Scale by -gamma */

for (ly = 0; ly < MYSUB; ly++)

for (lx = 0; lx < MXSUB; lx++)

denscale(-gamma, P[lx][ly], NVARS);

/* Add identity matrix and do LU decompositions on blocks in place */

for (lx = 0; lx < MXSUB; lx++) {

for (ly = 0; ly < MYSUB; ly++) {

denaddI(P[lx][ly], NVARS);

ier = gefa(P[lx][ly], NVARS, pivot[lx][ly]);

if (ier != 0) return(1);

}

}

return(0);

}

/* Preconditioner solve routine */

static int PSolve(integertype N, realtype tn, N_Vector u, N_Vector fu,

N_Vector vtemp, realtype gamma, N_Vector ewt, realtype delta,

long int *nfePtr, N_Vector r, int lr, void *P_data, N_Vector z)

{

realtype **(*P)[MYSUB];

integertype nvmxsub, *(*pivot)[MYSUB];

int lx, ly;

realtype *zdata, *v;

PreconData predata;

UserData data;

/* Extract the P and pivot arrays from P_data */

predata = (PreconData) P_data;

data = (UserData) (predata->f_data);

P = predata->P;

pivot = predata->pivot;

/* Solve the block-diagonal system Px = r using LU factors stored

in P and pivot data in pivot, and return the solution in z.

First copy vector r to z. */

140

N_VScale(1.0, r, z);

nvmxsub = data->nvmxsub;

zdata = NV_DATA_P(z);

for (lx = 0; lx < MXSUB; lx++) {

for (ly = 0; ly < MYSUB; ly++) {

v = &(zdata[lx*NVARS + ly*nvmxsub]);

gesl(P[lx][ly], NVARS, pivot[lx][ly], v);

}

}

return(0);

}

141

B Listings of cvodes Forward Sensitivity Examples

B.1 A Serial Sample Problem - cvfdx.c

/**

* *

* File : cvfdx.c *

* Programmers: Scott D. Cohen, Alan C. Hindmarsh, and Radu Serban *

* @ LLNL *

* Version of : 20 March 2002 *

--

* Example problem. *

* The following is a simple example problem, with the coding *

* needed for its solution by CVODES. The problem is from chemical *

* kinetics, and consists of the following three rate equations.. *

* dy1/dt = -p1*y1 + p2*y2*y3 *

* dy2/dt = p1*y1 - p2*y2*y3 - p3*(y2)^2 *

* dy3/dt = p3*(y2)^2 *

* on the interval from t = 0.0 to t = 4.e10, with initial conditions *

* y1 = 1.0, y2 = y3 = 0. The reaction rates are: p1=0.04, p2=1e4, and *

* p3=3e7. The problem is stiff. *

* This program solves the problem with the BDF method, Newton *

* iteration with the CVODES dense linear solver, and a user-supplied *

* Jacobian routine. *

* It uses a scalar relative tolerance and a vector absolute tolerance. *

* Output is printed in decades from t = .4 to t = 4.e10. *

* Run statistics (optional outputs) are printed at the end. *

* *

* Optionally, CVODES can compute sensitivities with respect to the *

* problem parameters p1, p2, and p3. *

* Any of three sensitivity methods (SIMULTANEOUS, STAGGERED, and *

* STAGGERED1) can be used and sensitivities may be included in the *

* error test or not (error control set on FULL or PARTIAL, *

* respectively). *

* *

* Execution: *

* *

* If no sensitivities are desired: *

* % cvsdx -nosensi *

* If sensitivities are to be computed: *

* % cvsdx -sensi sensi_meth err_con *

* where sensi_meth is one of {sim, stg, stg1} and err_con is one of *

* {full, partial}. *

* *

**/

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include "sundialstypes.h" /* definitions of types realtype and */

/* integertype, and the constant FALSE */

142

#include "cvodes.h" /* prototypes for CVodeMalloc, CVode, and CVodeFree, */

/* constants OPT_SIZE, BDF, NEWTON, SV, SUCCESS, */

/* NST, NFE, NSETUPS, NNI, NCFN, NETF */

#include "cvsdense.h" /* prototype for CVDense, constant DENSE_NJE */

#include "nvector_serial.h" /* definitions of type N_Vector and macro NV_Ith_S, */

/* prototypes for N_VNew, N_VFree */

#include "dense.h" /* definitions of type DenseMat, macro DENSE_ELEM */

#define Ith(v,i) NV_Ith_S(v,i-1) /* Ith numbers components 1..NEQ */

#define IJth(A,i,j) DENSE_ELEM(A,i-1,j-1) /* IJth numbers rows,cols 1..NEQ */

/* Problem Constants */

#define NEQ 3 /* number of equations */

#define Y1 1.0 /* initial y components */

#define Y2 0.0

#define Y3 0.0

#define RTOL 1e-4 /* scalar relative tolerance */

#define ATOL1 1e-8 /* vector absolute tolerance components */

#define ATOL2 1e-14

#define ATOL3 1e-6

#define T0 0.0 /* initial time */

#define T1 0.4 /* first output time */

#define TMULT 10.0 /* output time factor */

#define NOUT 12 /* number of output times */

#define NP 3

#define NS 3

#define ZERO 0.0

/* Type : UserData */

typedef struct {

realtype p[3];

} *UserData;

/* Private Helper Function */

static void WrongArgs(char *argv[]);

static void PrintFinalStats(booleantype sensi, int sensi_meth, int err_con,

long int iopt[]);

static void PrintOutput(long int iopt[], realtype ropt[], realtype t, N_Vector u);

static void PrintOutputS(N_Vector *uS);

/* Functions Called by the CVODES Solver */

static void f(integertype N, realtype t, N_Vector y, N_Vector ydot, void *f_data);

static void Jac(integertype N, DenseMat J, RhsFn f, void *f_data, realtype t,

N_Vector y, N_Vector fy, N_Vector ewt, realtype h, realtype uround,

void *jac_data, long int *nfePtr, N_Vector vtemp1,

N_Vector vtemp2, N_Vector vtemp3);

143

/***************************** Main Program ******************************/

int main(int argc, char *argv[])

{

M_Env machEnv;

UserData data;

realtype ropt[OPT_SIZE], reltol, t, tout;

long int iopt[OPT_SIZE];

N_Vector y, abstol;

void *cvode_mem;

int iout, flag;

realtype pbar[NP], rhomax;

integertype is, *plist;

N_Vector *yS;

booleantype sensi;

int sensi_meth, err_con, ifS;

/* Process arguments */

if (argc < 2)

WrongArgs(argv);

if (strcmp(argv[1],"-nosensi") == 0)

sensi = FALSE;

else if (strcmp(argv[1],"-sensi") == 0)

sensi = TRUE;

else

WrongArgs(argv);

if (sensi) {

if (argc != 4)

WrongArgs(argv);

if (strcmp(argv[2],"sim") == 0)

sensi_meth = SIMULTANEOUS;

else if (strcmp(argv[2],"stg") == 0)

sensi_meth = STAGGERED;

else if (strcmp(argv[2],"stg1") == 0)

sensi_meth = STAGGERED1;

else

WrongArgs(argv);

if (strcmp(argv[3],"full") == 0)

err_con = FULL;

else if (strcmp(argv[3],"partial") == 0)

err_con = PARTIAL;

else

WrongArgs(argv);

144

}

/* Initialize serial machine environment */

machEnv = M_EnvInit_Serial(NEQ);

/* USER DATA STRUCTURE */

data = (UserData) malloc(sizeof *data);

data->p[0] = 0.04;

data->p[1] = 1.0e4;

data->p[2] = 3.0e7;

/* INITIAL STATES */

y = N_VNew(NEQ, machEnv);

abstol = N_VNew(NEQ, machEnv);

/* Initialize y */

Ith(y,1) = Y1;

Ith(y,2) = Y2;

Ith(y,3) = Y3;

/* TOLERANCES */

/* Set the scalar relative tolerance */

reltol = RTOL;

/* Set the vector absolute tolerance */

Ith(abstol,1) = ATOL1;

Ith(abstol,2) = ATOL2;

Ith(abstol,3) = ATOL3;

/* CVODE_MALLOC */

cvode_mem = CVodeMalloc(NEQ, f, T0, y, BDF, NEWTON, SV, &reltol, abstol,

data, NULL, FALSE, iopt, ropt, machEnv);

if (cvode_mem == NULL) {

printf("CVodeMalloc failed.\n");

return(1);

}

/* CVDENSE */

flag = CVDense(cvode_mem, Jac, NULL);

if (flag != SUCCESS) { printf("CVDense failed.\n"); return(1); }

/* SENSITIVITY */

if(sensi) {

pbar[0] = data->p[0];

pbar[1] = data->p[1];

pbar[2] = data->p[2];

plist = (integertype *) malloc(NS * sizeof(integertype));

for(is=0;is<NS;is++) plist[is] = is+1;

yS = N_VNew_S(NS, NEQ, machEnv);

for(is=0;is<NS;is++)

145

N_VConst(0.0, yS[is]);

ifS = ALLSENS;

if(sensi_meth==STAGGERED1) ifS = ONESENS;

rhomax = ZERO;

flag = CVodeSensMalloc(cvode_mem, NS, sensi_meth, data->p, pbar, plist,

ifS, NULL, err_con, rhomax, yS, NULL, NULL);

if (flag != SUCCESS) {

printf("CVodeSensMalloc failed, flag=%d\n",flag);

return(1);

}

}

/* In loop over output points, call CVode, print results, test for error */

printf("\n3-species chemical kinetics problem\n\n");

printf("===");

printf("==================================\n");

printf(" T Q H NST y1");

printf(" y2 y3 \n");

printf("===");

printf("==================================\n");

for (iout=1, tout=T1; iout <= NOUT; iout++, tout *= TMULT) {

flag = CVode(cvode_mem, tout, y, &t, NORMAL);

if (flag != SUCCESS) {

printf("CVode failed, flag=%d.\n", flag);

break;

}

PrintOutput(iopt, ropt, t, y);

if (sensi) {

flag = CVodeSensExtract(cvode_mem, t, yS);

if (flag != SUCCESS) {

printf("CVodeSensExtract failed, flag=%d.\n", flag);

break;

}

PrintOutputS(yS);

}

printf("---");

printf("------------------------------------\n");

}

/* Print final statistics */

PrintFinalStats(sensi,sensi_meth,err_con,iopt);

/* Free memory */

N_VFree(y); /* Free the y and abstol vectors */

N_VFree(abstol);

if(sensi) N_VFree_S(NS, yS); /* Free the yS vectors */

free(data); /* Free user data */

146

CVodeFree(cvode_mem); /* Free the CVODES problem memory */

M_EnvFree_Serial(machEnv); /* Free the machine environment memory */

return(0);

}

/************************ Private Helper Function ************************/

/* === */

/* Exit if arguments are incorrect */

static void WrongArgs(char *argv[])

{

printf("\nUsage: %s [-nosensi] [-sensi sensi_meth err_con]\n",argv[0]);

printf(" sensi_meth = sim, stg, or stg1\n");

printf(" err_con = full or partial\n");

exit(0);

}

/* === */

/* Print current t, step count, order, stepsize, and solution */

static void PrintOutput(long int iopt[], realtype ropt[], realtype t, N_Vector u)

{

realtype *udata;

udata = NV_DATA_S(u);

printf("%8.3e %2ld %8.3e %5ld\n", t,iopt[QU],ropt[HU],iopt[NST]);

printf(" Solution ");

printf("%12.4e %12.4e %12.4e \n", udata[0], udata[1], udata[2]);

}

/* === */

/* Print sensitivities */

static void PrintOutputS(N_Vector *uS)

{

realtype *sdata;

sdata = NV_DATA_S(uS[0]);

printf(" Sensitivity 1 ");

printf("%12.4e %12.4e %12.4e \n", sdata[0], sdata[1], sdata[2]);

sdata = NV_DATA_S(uS[1]);

printf(" Sensitivity 2 ");

printf("%12.4e %12.4e %12.4e \n", sdata[0], sdata[1], sdata[2]);

147

sdata = NV_DATA_S(uS[2]);

printf(" Sensitivity 3 ");

printf("%12.4e %12.4e %12.4e \n", sdata[0], sdata[1], sdata[2]);

}

/* === */

/* Print some final statistics located in the iopt array */

static void PrintFinalStats(booleantype sensi, int sensi_meth, int err_con,

long int iopt[])

{

printf("\n\n==");

printf("\nFinal Statistics");

printf("\nSensitivity: ");

if(sensi) {

printf("YES ");

if(sensi_meth == SIMULTANEOUS)

printf("(SIMULTANEOUS +");

else

if(sensi_meth == STAGGERED) printf("(STAGGERED +");

else printf("(STAGGERED1 +");

if(err_con == FULL) printf(" FULL ERROR CONTROL)");

else printf(" PARTIAL ERROR CONTROL)");

} else {

printf("NO");

}

printf("\n\n");

/*

printf("lenrw = %5ld leniw = %5ld\n", iopt[LENRW], iopt[LENIW]);

printf("llrw = %5ld lliw = %5ld\n", iopt[SPGMR_LRW], iopt[SPGMR_LIW]);

*/

printf("nst = %5ld \n\n", iopt[NST]);

printf("nfe = %5ld nfSe = %5ld \n", iopt[NFE], iopt[NFSE]);

printf("nni = %5ld nniS = %5ld \n", iopt[NNI], iopt[NNIS]);

printf("ncfn = %5ld ncfnS = %5ld \n", iopt[NCFN], iopt[NCFNS]);

printf("netf = %5ld netfS = %5ld\n\n", iopt[NETF], iopt[NETFS]);

printf("nsetups = %5ld \n", iopt[NSETUPS]);

printf("nje = %5ld \n", iopt[DENSE_NJE]);

printf("==\n");

}

/***************** Functions Called by the CVODES Solver ******************/

148

/* === */

/* f routine. Compute f(t,y). */

static void f(integertype N, realtype t, N_Vector y, N_Vector ydot, void *f_data)

{

realtype y1, y2, y3, yd1, yd3;

UserData data;

realtype p1, p2, p3;

y1 = Ith(y,1); y2 = Ith(y,2); y3 = Ith(y,3);

data = (UserData) f_data;

p1 = data->p[0]; p2 = data->p[1]; p3 = data->p[2];

yd1 = Ith(ydot,1) = -p1*y1 + p2*y2*y3;

yd3 = Ith(ydot,3) = p3*y2*y2;

Ith(ydot,2) = -yd1 - yd3;

}

/* === */

/* Jacobian routine. Compute J(t,y). */

static void Jac(integertype N, DenseMat J, RhsFn f, void *f_data, realtype t,

N_Vector y, N_Vector fy, N_Vector ewt, realtype h, realtype uround,

void *jac_data, long int *nfePtr, N_Vector vtemp1,

N_Vector vtemp2, N_Vector vtemp3)

{

realtype y1, y2, y3;

UserData data;

realtype p1, p2, p3;

y1 = Ith(y,1); y2 = Ith(y,2); y3 = Ith(y,3);

data = (UserData) f_data;

p1 = data->p[0]; p2 = data->p[1]; p3 = data->p[2];

IJth(J,1,1) = -p1; IJth(J,1,2) = p2*y3; IJth(J,1,3) = p2*y2;

IJth(J,2,1) = p1; IJth(J,2,2) = -p2*y3-2*p3*y2; IJth(J,2,3) = -p2*y2;

IJth(J,3,2) = 2*p3*y2;

}

149

B.2 A Parallel Sample Program - pvfkx.c

/**

* *

* File : pvfkx.c *

* Programmers: S. D. Cohen, A. C. Hindmarsh, Radu Serban, and *

* M. R. Wittman @ LLNL *

* Version of : 21 March 2002 *

--

* Example problem. *

* An ODE system is generated from the following 2-species diurnal *

* kinetics advection-diffusion PDE system in 2 space dimensions: *

* *

* dc(i)/dt = Kh*(d/dx)^2 c(i) + V*dc(i)/dx + (d/dy)(Kv(y)*dc(i)/dy) *

* + Ri(c1,c2,t) for i = 1,2, where *

* R1(c1,c2,t) = -q1*c1*c3 - q2*c1*c2 + 2*q3(t)*c3 + q4(t)*c2 , *

* R2(c1,c2,t) = q1*c1*c3 - q2*c1*c2 - q4(t)*c2 , *

* Kv(y) = Kv0*exp(y/5) , *

* Kh, V, Kv0, q1, q2, and c3 are constants, and q3(t) and q4(t) *

* vary diurnally. The problem is posed on the square *

* 0 <= x <= 20, 30 <= y <= 50 (all in km), *

* with homogeneous Neumann boundary conditions, and for time t in *

* 0 <= t <= 86400 sec (1 day). *

* The PDE system is treated by central differences on a uniform *

* mesh, with simple polynomial initial profiles. *

* *

* The problem is solved by CVODES on NPE processors, treated as a *

* rectangular process grid of size NPEX by NPEY, with NPE = NPEX*NPEY. *

* Each processor contains a subgrid of size MXSUB by MYSUB of the *

* (x,y) mesh. Thus the actual mesh sizes are MX = MXSUB*NPEX and *

* MY = MYSUB*NPEY, and the ODE system size is neq = 2*MX*MY. *

* *

* The solution with CVODES is done with the BDF/GMRES method (i.e. *

* using the CVSPGMR linear solver) and the block-diagonal part of the *

* Newton matrix as a left preconditioner. A copy of the block-diagonal *

* part of the Jacobian is saved and conditionally reused within the *

* Precond routine. *

* *

* Performance data and sampled solution values are printed at selected *

* output times, and all performance counters are printed on completion.*

* *

* Optionally, CVODES can compute sensitivities with respect to the *

* problem parameters q1 and q2. *

* Any of three sensitivity methods (SIMULTANEOUS, STAGGERED, and *

* STAGGERED1) can be used and sensitivities may be included in the *

* error test or not (error control set on FULL or PARTIAL, *

* respectively). *

* *

* Execution: *

* *

* NOTE: This version uses MPI for user routines, and the CVODES *

150

* solver. In what follows, N is the number of processors, *

* N = NPEX*NPEY (see constants below) and it is assumed that *

* the MPI script mpirun is used to run a paralles application. *

* If no sensitivities are desired: *

* % mpirun -np N pvfkx -nosensi *

* If sensitivities are to be computed: *

* % mpirun -np N pvfkx -sensi sensi_meth err_con *

* where sensi_meth is one of {sim, stg, stg1} and err_con is one of *

* {full, partial}. *

* *

**/

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <string.h>

#include "sundialstypes.h" /* definitions of realtype, integertype, */

/* booleantype, and constants TRUE, FALSE */

#include "cvodes.h" /* main CVODES header file */

#include "iterativ.h" /* contains the enum for types of preconditioning */

#include "cvsspgmr.h" /* use CVSPGMR linear solver each internal step */

#include "smalldense.h" /* use generic DENSE solver in preconditioning */

#include "nvector_parallel.h" /* definitions of type N_Vector, macro N_VDATA */

#include "sundialsmath.h" /* contains SQR macro */

#include "mpi.h"

/* Problem Constants */

#define NVARS 2 /* number of species */

#define C1_SCALE 1.0e6 /* coefficients in initial profiles */

#define C2_SCALE 1.0e12

#define T0 0.0 /* initial time */

#define NOUT 12 /* number of output times */

#define TWOHR 7200.0 /* number of seconds in two hours */

#define HALFDAY 4.32e4 /* number of seconds in a half day */

#define PI 3.1415926535898 /* pi */

#define XMIN 0.0 /* grid boundaries in x */

#define XMAX 20.0

#define YMIN 30.0 /* grid boundaries in y */

#define YMAX 50.0

#define NPEX 2 /* no. PEs in x direction of PE array */

#define NPEY 2 /* no. PEs in y direction of PE array */

/* Total no. PEs = NPEX*NPEY */

#define MXSUB 5 /* no. x points per subgrid */

#define MYSUB 5 /* no. y points per subgrid */

#define MX (NPEX*MXSUB) /* MX = number of x mesh points */

151

#define MY (NPEY*MYSUB) /* MY = number of y mesh points */

/* Spatial mesh is MX by MY */

/* CVodeMalloc Constants */

#define RTOL 1.0e-5 /* scalar relative tolerance */

#define FLOOR 100.0 /* value of C1 or C2 at which tols. */

/* change from relative to absolute */

#define ATOL (RTOL*FLOOR) /* scalar absolute tolerance */

/* Sensitivity constants */

#define NP 8 /* number of problem parameters */

#define NS 2 /* number of sensitivities */

#define ZERO RCONST(0.0)

/* User-defined matrix accessor macro: IJth */

/* IJth is defined in order to write code which indexes into small dense

matrices with a (row,column) pair, where 1 <= row,column <= NVARS.

IJth(a,i,j) references the (i,j)th entry of the small matrix realtype **a,

where 1 <= i,j <= NVARS. The small matrix routines in dense.h

work with matrices stored by column in a 2-dimensional array. In C,

arrays are indexed starting at 0, not 1. */

#define IJth(a,i,j) (a[j-1][i-1])

/* Type : UserData

contains problem constants, preconditioner blocks, pivot arrays,

grid constants, and processor indices */

typedef struct {

realtype *p;

realtype q4, om, dx, dy, hdco, haco, vdco;

realtype uext[NVARS*(MXSUB+2)*(MYSUB+2)];

integertype my_pe, isubx, isuby, nvmxsub, nvmxsub2;

MPI_Comm comm;

} *UserData;

typedef struct {

void *f_data;

realtype **P[MXSUB][MYSUB], **Jbd[MXSUB][MYSUB];

integertype *pivot[MXSUB][MYSUB];

} *PreconData;

/* Private Helper Functions */

static void WrongArgs(integertype my_pe, char *argv[]);

static PreconData AllocPreconData(UserData data);

static void InitUserData(integertype my_pe, MPI_Comm comm, UserData data);

static void FreePreconData(PreconData pdata);

152

static void SetInitialProfiles(N_Vector u, UserData data);

static void PrintOutput(integertype my_pe, MPI_Comm comm, long int iopt[],

realtype ropt[], realtype t, N_Vector u);

static void PrintOutputS(integertype my_pe, MPI_Comm comm, N_Vector *uS);

static void PrintFinalStats(booleantype sensi, int sensi_meth, int err_con,

long int iopt[]);

static void BSend(MPI_Comm comm, integertype my_pe, integertype isubx,

integertype isuby, integertype dsizex, integertype dsizey,

realtype udata[]);

static void BRecvPost(MPI_Comm comm, MPI_Request request[], integertype my_pe,

integertype isubx, integertype isuby,

integertype dsizex, integertype dsizey,

realtype uext[], realtype buffer[]);

static void BRecvWait(MPI_Request request[], integertype isubx, integertype isuby,

integertype dsizex, realtype uext[], realtype buffer[]);

static void ucomm(integertype N, realtype t, N_Vector u, UserData data);

static void fcalc(integertype N, realtype t, realtype udata[],

realtype dudata[], UserData data);

/* Functions Called by the CVODES Solver */

static void f(integertype N, realtype t, N_Vector u, N_Vector udot, void *f_data);

static int Precond(integertype N, realtype tn, N_Vector u, N_Vector fu,

booleantype jok, booleantype *jcurPtr,

realtype gamma, N_Vector ewt, realtype h,

realtype uround, long int *nfePtr, void *P_data,

N_Vector vtemp1, N_Vector vtemp2, N_Vector vtemp3);

static int PSolve(integertype N, realtype tn, N_Vector u, N_Vector fu,

N_Vector vtemp, realtype gamma, N_Vector ewt, realtype delta,

long int *nfePtr, N_Vector r, int lr, void *P_data, N_Vector z);

/***************************** Main Program ******************************/

int main(int argc, char *argv[])

{

M_Env machEnv;

realtype abstol, reltol, t, tout, ropt[OPT_SIZE];

long int iopt[OPT_SIZE];

N_Vector u;

UserData data;

PreconData predata;

void *cvode_mem;

int iout, flag, my_pe, npes;

integertype neq, local_N;

MPI_Comm comm;

realtype *pbar, rhomax;

integertype is, *plist;

N_Vector *uS;

153

booleantype sensi;

int sensi_meth, err_con, ifS;

/* Set problem size neq */

neq = NVARS*MX*MY;

/* Get processor number and total number of pe’s */

MPI_Init(&argc, &argv);

comm = MPI_COMM_WORLD;

MPI_Comm_size(comm, &npes);

MPI_Comm_rank(comm, &my_pe);

/* Process arguments */

if (argc < 2)

WrongArgs(my_pe,argv);

if (strcmp(argv[1],"-nosensi") == 0)

sensi = FALSE;

else if (strcmp(argv[1],"-sensi") == 0)

sensi = TRUE;

else

WrongArgs(my_pe,argv);

if (sensi) {

if (argc != 4)

WrongArgs(my_pe,argv);

if (strcmp(argv[2],"sim") == 0)

sensi_meth = SIMULTANEOUS;

else if (strcmp(argv[2],"stg") == 0)

sensi_meth = STAGGERED;

else if (strcmp(argv[2],"stg1") == 0)

sensi_meth = STAGGERED1;

else

WrongArgs(my_pe,argv);

if (strcmp(argv[3],"full") == 0)

err_con = FULL;

else if (strcmp(argv[3],"partial") == 0)

err_con = PARTIAL;

else

WrongArgs(my_pe,argv);

}

if (npes != NPEX*NPEY) {

if (my_pe == 0)

printf("\n npes=%d is not equal to NPEX*NPEY=%d\n", npes,NPEX*NPEY);

return(1);

}

154

/* Set local length */

local_N = NVARS*MXSUB*MYSUB;

/* Allocate and load user data block; allocate preconditioner block */

data = (UserData) malloc(sizeof *data);

data->p = (realtype *) malloc(NP*sizeof(realtype));

InitUserData(my_pe, comm, data);

predata = AllocPreconData (data);

/* Set machEnv block */

machEnv = M_EnvInit_Parallel(comm, local_N, neq, &argc, &argv);

if (machEnv == NULL) return(1);

/* Allocate u, and set initial values and tolerances */

u = N_VNew(neq, machEnv);

SetInitialProfiles(u, data);

abstol = ATOL; reltol = RTOL;

for (is=0; is<OPT_SIZE; is++) {

iopt[is] = 0;

ropt[is] = 0.0;

}

iopt[MXSTEP] = 2000;

/* CVODE_MALLOC */

cvode_mem = CVodeMalloc(neq, f, T0, u, BDF, NEWTON, SS, &reltol,

&abstol, data, NULL, TRUE, iopt, ropt, machEnv);

if (cvode_mem == NULL) {

printf("CVodeMalloc failed.");

return(1);

}

/* CVSPGMR */

flag = CVSpgmr(cvode_mem, LEFT, MODIFIED_GS, 0, 0.0,

Precond, PSolve, predata, NULL, NULL);

if (flag != SUCCESS) { printf("CVSpgmr failed.\n"); return(1); }

/* SENSITIVTY */

if(sensi) {

pbar = (realtype *) malloc(NP*sizeof(realtype));

for(is=0; is<NP; is++) pbar[is] = data->p[is];

plist = (integertype *) malloc(NS * sizeof(integertype));

for(is=0; is<NS; is++) plist[is] = is+1;

uS = N_VNew_S(NS,neq,machEnv);

for(is=0;is<NS;is++)

N_VConst(ZERO,uS[is]);

rhomax = ZERO;

ifS = ALLSENS;

155

if(sensi_meth==STAGGERED1) ifS = ONESENS;

flag = CVodeSensMalloc(cvode_mem,NS,sensi_meth,data->p,pbar,plist,

ifS,NULL,err_con,rhomax,uS,NULL,NULL);

if (flag != SUCCESS) {

if (my_pe == 0) printf("CVodeSensMalloc failed, flag=%d\n",flag);

return(1);

}

}

if (my_pe == 0) {

printf("\n2-species diurnal advection-diffusion problem\n\n");

printf("==\n");

printf(" T Q H NST Bottom left Top right \n");

printf("==\n");

}

/* In loop over output points, call CVode, print results, test for error */

for (iout=1, tout = TWOHR; iout <= NOUT; iout++, tout += TWOHR) {

flag = CVode(cvode_mem, tout, u, &t, NORMAL);

if (flag != SUCCESS) {

if (my_pe == 0) printf("CVode failed, flag=%d.\n", flag);

break;

}

PrintOutput(my_pe, comm, iopt, ropt, t, u);

if (sensi) {

flag = CVodeSensExtract(cvode_mem, t, uS);

if (flag != SUCCESS) {

printf("CVodeSensExtract failed, flag=%d.\n", flag);

break;

}

PrintOutputS(my_pe, comm, uS);

}

if (my_pe == 0)

printf("--\n");

}

/* Print final statistics */

if (my_pe == 0) PrintFinalStats(sensi,sensi_meth,err_con,iopt);

/* Free memory */

N_VFree(u);

if(sensi)

N_VFree_S(NS, uS);

free(data->p);

free(data);

FreePreconData(predata);

CVodeFree(cvode_mem);

M_EnvFree_Parallel(machEnv);

MPI_Finalize();

156

return(0);

}

/*********************** Private Helper Functions ************************/

/* === */

/* Exit if arguments are incorrect */

static void WrongArgs(integertype my_pe, char *argv[])

{

if (my_pe == 0) {

printf("\nUsage: %s [-nosensi] [-sensi sensi_meth err_con]\n",argv[0]);

printf(" sensi_meth = sim, stg, or stg1\n");

printf(" err_con = full or partial\n");

}

MPI_Finalize();

exit(0);

}

/* === */

/* Allocate memory for data structure of type UserData */

static PreconData AllocPreconData(UserData fdata)

{

int lx, ly;

PreconData pdata;

pdata = (PreconData) malloc(sizeof *pdata);

pdata->f_data = fdata;

for (lx = 0; lx < MXSUB; lx++) {

for (ly = 0; ly < MYSUB; ly++) {

(pdata->P)[lx][ly] = denalloc(NVARS);

(pdata->Jbd)[lx][ly] = denalloc(NVARS);

(pdata->pivot)[lx][ly] = denallocpiv(NVARS);

}

}

return(pdata);

}

/* === */

/* Load constants in data */

static void InitUserData(integertype my_pe, MPI_Comm comm, UserData data)

{

integertype isubx, isuby;

realtype KH, VEL, KV0;

157

/* Set problem parameters */

data->p[0] = 1.63e-16; /* Q1 coeffs. q1, q2, c3 */

data->p[1] = 4.66e-16; /* Q2 */

data->p[2] = 3.7e16; /* C3 */

data->p[3] = 22.62; /* A3 coeff. in expression for q3(t) */

data->p[4] = 7.601; /* A4 coeff. in expression for q4(t) */

KH = data->p[5] = 4.0e-6; /* KH horizontal diffusivity Kh */

VEL = data->p[6] = 0.001; /* VEL advection velocity V */

KV0 = data->p[7] = 1.0e-8; /* KV0 coeff. in Kv(z) */

/* Set problem constants */

data->om = PI/HALFDAY;

data->dx = (XMAX-XMIN)/((realtype)(MX-1));

data->dy = (YMAX-YMIN)/((realtype)(MY-1));

data->hdco = KH/SQR(data->dx);

data->haco = VEL/(2.0*data->dx);

data->vdco = (1.0/SQR(data->dy))*KV0;

/* Set machine-related constants */

data->comm = comm;

data->my_pe = my_pe;

/* isubx and isuby are the PE grid indices corresponding to my_pe */

isuby = my_pe/NPEX;

isubx = my_pe - isuby*NPEX;

data->isubx = isubx;

data->isuby = isuby;

/* Set the sizes of a boundary x-line in u and uext */

data->nvmxsub = NVARS*MXSUB;

data->nvmxsub2 = NVARS*(MXSUB+2);

}

/* === */

/* Free data memory */

static void FreePreconData(PreconData pdata)

{

int lx, ly;

for (lx = 0; lx < MXSUB; lx++) {

for (ly = 0; ly < MYSUB; ly++) {

denfree((pdata->P)[lx][ly]);

denfree((pdata->Jbd)[lx][ly]);

denfreepiv((pdata->pivot)[lx][ly]);

}

}

free(pdata);

}

/* === */

158

/* Set initial conditions in u */

static void SetInitialProfiles(N_Vector u, UserData data)

{

integertype isubx, isuby, lx, ly, jx, jy, offset;

realtype dx, dy, x, y, cx, cy, xmid, ymid;

realtype *udata;

/* Set pointer to data array in vector u */

udata = NV_DATA_P(u);

/* Get mesh spacings, and subgrid indices for this PE */

dx = data->dx; dy = data->dy;

isubx = data->isubx; isuby = data->isuby;

/* Load initial profiles of c1 and c2 into local u vector.

Here lx and ly are local mesh point indices on the local subgrid,

and jx and jy are the global mesh point indices. */

offset = 0;

xmid = .5*(XMIN + XMAX);

ymid = .5*(YMIN + YMAX);

for (ly = 0; ly < MYSUB; ly++) {

jy = ly + isuby*MYSUB;

y = YMIN + jy*dy;

cy = SQR(0.1*(y - ymid));

cy = 1.0 - cy + 0.5*SQR(cy);

for (lx = 0; lx < MXSUB; lx++) {

jx = lx + isubx*MXSUB;

x = XMIN + jx*dx;

cx = SQR(0.1*(x - xmid));

cx = 1.0 - cx + 0.5*SQR(cx);

udata[offset] = C1_SCALE*cx*cy;

udata[offset+1] = C2_SCALE*cx*cy;

offset = offset + 2;

}

}

}

/* === */

/* Print current t, step count, order, stepsize, and sampled c1,c2 values */

static void PrintOutput(integertype my_pe, MPI_Comm comm, long int iopt[],

realtype ropt[], realtype t, N_Vector u)

{

realtype *udata, tempu[2];

integertype npelast, i0, i1;

MPI_Status status;

npelast = NPEX*NPEY - 1;

udata = NV_DATA_P(u);

159

/* Send c at top right mesh point to PE 0 */

if (my_pe == npelast) {

i0 = NVARS*MXSUB*MYSUB - 2;

i1 = i0 + 1;

if (npelast != 0)

MPI_Send(&udata[i0], 2, PVEC_REAL_MPI_TYPE, 0, 0, comm);

else {

tempu[0] = udata[i0];

tempu[1] = udata[i1];

}

}

/* On PE 0, receive c at top right, then print performance data

and sampled solution values */

if (my_pe == 0) {

if (npelast != 0)

MPI_Recv(&tempu[0], 2, PVEC_REAL_MPI_TYPE, npelast, 0, comm, &status);

printf("%8.3e %2ld %8.3e %5ld\n", t,iopt[QU],ropt[HU],iopt[NST]);

printf(" Solution ");

printf("%12.4e %12.4e \n", udata[0], tempu[0]);

printf(" ");

printf("%12.4e %12.4e \n", udata[1], tempu[1]);

}

}

/* === */

/* Print sampled sensitivity values */

static void PrintOutputS(integertype my_pe, MPI_Comm comm, N_Vector *uS)

{

realtype *sdata, temps[2];

integertype npelast, i0, i1;

MPI_Status status;

npelast = NPEX*NPEY - 1;

sdata = NV_DATA_P(uS[0]);

/* Send s1 at top right mesh point to PE 0 */

if (my_pe == npelast) {

i0 = NVARS*MXSUB*MYSUB - 2;

i1 = i0 + 1;

if (npelast != 0)

MPI_Send(&sdata[i0], 2, PVEC_REAL_MPI_TYPE, 0, 0, comm);

else {

temps[0] = sdata[i0];

temps[1] = sdata[i1];

}

}

/* On PE 0, receive s1 at top right, then print sampled sensitivity values */

160

if (my_pe == 0) {

if (npelast != 0)

MPI_Recv(&temps[0], 2, PVEC_REAL_MPI_TYPE, npelast, 0, comm, &status);

printf(" --\n");

printf(" Sensitivity 1 ");

printf("%12.4e %12.4e \n", sdata[0], temps[0]);

printf(" ");

printf("%12.4e %12.4e \n", sdata[1], temps[1]);

}

sdata = NV_DATA_P(uS[1]);

/* Send s2 at top right mesh point to PE 0 */

if (my_pe == npelast) {

i0 = NVARS*MXSUB*MYSUB - 2;

i1 = i0 + 1;

if (npelast != 0)

MPI_Send(&sdata[i0], 2, PVEC_REAL_MPI_TYPE, 0, 0, comm);

else {

temps[0] = sdata[i0];

temps[1] = sdata[i1];

}

}

/* On PE 0, receive s2 at top right, then print sampled sensitivity values */

if (my_pe == 0) {

if (npelast != 0)

MPI_Recv(&temps[0], 2, PVEC_REAL_MPI_TYPE, npelast, 0, comm, &status);

printf(" --\n");

printf(" Sensitivity 2 ");

printf("%12.4e %12.4e \n", sdata[0], temps[0]);

printf(" ");

printf("%12.4e %12.4e \n", sdata[1], temps[1]);

}

}

/* === */

/* Print final statistics contained in iopt */

static void PrintFinalStats(booleantype sensi, int sensi_meth, int err_con,

long int iopt[])

{

printf("\n\n==");

printf("\nFinal Statistics");

printf("\nSensitivity: ");

if(sensi) {

printf("YES ");

if(sensi_meth == SIMULTANEOUS)

printf("(SIMULTANEOUS +");

else

161

if(sensi_meth == STAGGERED) printf("(STAGGERED +");

else printf("(STAGGERED1 +");

if(err_con == FULL) printf(" FULL ERROR CONTROL)");

else printf(" PARTIAL ERROR CONTROL)");

} else {

printf("NO");

}

printf("\n\n");

printf("nst = %5ld \n\n", iopt[NST]);

printf("nfe = %5ld nfSe = %5ld \n", iopt[NFE], iopt[NFSE]);

printf("nni = %5ld nniS = %5ld \n", iopt[NNI], iopt[NNIS]);

printf("ncfn = %5ld ncfnS = %5ld \n", iopt[NCFN], iopt[NCFNS]);

printf("netf = %5ld netfS = %5ld\n\n", iopt[NETF], iopt[NETFS]);

printf("nsetups = %5ld \n", iopt[NSETUPS]);

printf("nli = %5ld ncfl = %5ld \n", iopt[SPGMR_NLI], iopt[SPGMR_NCFL]);

printf("npe = %5ld nps = %5ld \n", iopt[SPGMR_NPE], iopt[SPGMR_NPS]);

printf("==\n");

}

/* === */

/* Routine to send boundary data to neighboring PEs */

static void BSend(MPI_Comm comm, integertype my_pe, integertype isubx,

integertype isuby, integertype dsizex, integertype dsizey,

realtype udata[])

{

int i, ly;

integertype offsetu, offsetbuf;

realtype bufleft[NVARS*MYSUB], bufright[NVARS*MYSUB];

/* If isuby > 0, send data from bottom x-line of u */

if (isuby != 0)

MPI_Send(&udata[0], dsizex, PVEC_REAL_MPI_TYPE, my_pe-NPEX, 0, comm);

/* If isuby < NPEY-1, send data from top x-line of u */

if (isuby != NPEY-1) {

offsetu = (MYSUB-1)*dsizex;

MPI_Send(&udata[offsetu], dsizex, PVEC_REAL_MPI_TYPE, my_pe+NPEX, 0, comm);

}

/* If isubx > 0, send data from left y-line of u (via bufleft) */

if (isubx != 0) {

for (ly = 0; ly < MYSUB; ly++) {

offsetbuf = ly*NVARS;

offsetu = ly*dsizex;

for (i = 0; i < NVARS; i++)

bufleft[offsetbuf+i] = udata[offsetu+i];

}

162

MPI_Send(&bufleft[0], dsizey, PVEC_REAL_MPI_TYPE, my_pe-1, 0, comm);

}

/* If isubx < NPEX-1, send data from right y-line of u (via bufright) */

if (isubx != NPEX-1) {

for (ly = 0; ly < MYSUB; ly++) {

offsetbuf = ly*NVARS;

offsetu = offsetbuf*MXSUB + (MXSUB-1)*NVARS;

for (i = 0; i < NVARS; i++)

bufright[offsetbuf+i] = udata[offsetu+i];

}

MPI_Send(&bufright[0], dsizey, PVEC_REAL_MPI_TYPE, my_pe+1, 0, comm);

}

}

/* === */

/* Routine to start receiving boundary data from neighboring PEs.

Notes:

1) buffer should be able to hold 2*NVARS*MYSUB realtype entries, should be

passed to both the BRecvPost and BRecvWait functions, and should not

be manipulated between the two calls.

2) request should have 4 entries, and should be passed in both calls also. */

static void BRecvPost(MPI_Comm comm, MPI_Request request[], integertype my_pe,

integertype isubx, integertype isuby,

integertype dsizex, integertype dsizey,

realtype uext[], realtype buffer[])

{

integertype offsetue;

/* Have bufleft and bufright use the same buffer */

realtype *bufleft = buffer, *bufright = buffer+NVARS*MYSUB;

/* If isuby > 0, receive data for bottom x-line of uext */

if (isuby != 0)

MPI_Irecv(&uext[NVARS], dsizex, PVEC_REAL_MPI_TYPE,

my_pe-NPEX, 0, comm, &request[0]);

/* If isuby < NPEY-1, receive data for top x-line of uext */

if (isuby != NPEY-1) {

offsetue = NVARS*(1 + (MYSUB+1)*(MXSUB+2));

MPI_Irecv(&uext[offsetue], dsizex, PVEC_REAL_MPI_TYPE,

my_pe+NPEX, 0, comm, &request[1]);

}

/* If isubx > 0, receive data for left y-line of uext (via bufleft) */

if (isubx != 0) {

MPI_Irecv(&bufleft[0], dsizey, PVEC_REAL_MPI_TYPE,

my_pe-1, 0, comm, &request[2]);

}

163

/* If isubx < NPEX-1, receive data for right y-line of uext (via bufright) */

if (isubx != NPEX-1) {

MPI_Irecv(&bufright[0], dsizey, PVEC_REAL_MPI_TYPE,

my_pe+1, 0, comm, &request[3]);

}

}

/* === */

/* Routine to finish receiving boundary data from neighboring PEs.

Notes:

1) buffer should be able to hold 2*NVARS*MYSUB realtype entries, should be

passed to both the BRecvPost and BRecvWait functions, and should not

be manipulated between the two calls.

2) request should have 4 entries, and should be passed in both calls also. */

static void BRecvWait(MPI_Request request[], integertype isubx, integertype isuby,

integertype dsizex, realtype uext[], realtype buffer[])

{

int i, ly;

integertype dsizex2, offsetue, offsetbuf;

realtype *bufleft = buffer, *bufright = buffer+NVARS*MYSUB;

MPI_Status status;

dsizex2 = dsizex + 2*NVARS;

/* If isuby > 0, receive data for bottom x-line of uext */

if (isuby != 0)

MPI_Wait(&request[0],&status);

/* If isuby < NPEY-1, receive data for top x-line of uext */

if (isuby != NPEY-1)

MPI_Wait(&request[1],&status);

/* If isubx > 0, receive data for left y-line of uext (via bufleft) */

if (isubx != 0) {

MPI_Wait(&request[2],&status);

/* Copy the buffer to uext */

for (ly = 0; ly < MYSUB; ly++) {

offsetbuf = ly*NVARS;

offsetue = (ly+1)*dsizex2;

for (i = 0; i < NVARS; i++)

uext[offsetue+i] = bufleft[offsetbuf+i];

}

}

/* If isubx < NPEX-1, receive data for right y-line of uext (via bufright) */

if (isubx != NPEX-1) {

MPI_Wait(&request[3],&status);

164

/* Copy the buffer to uext */

for (ly = 0; ly < MYSUB; ly++) {

offsetbuf = ly*NVARS;

offsetue = (ly+2)*dsizex2 - NVARS;

for (i = 0; i < NVARS; i++)

uext[offsetue+i] = bufright[offsetbuf+i];

}

}

}

/* === */

/* ucomm routine. This routine performs all communication

between processors of data needed to calculate f. */

static void ucomm(integertype N, realtype t, N_Vector u, UserData data)

{

realtype *udata, *uext, buffer[2*NVARS*MYSUB];

MPI_Comm comm;

integertype my_pe, isubx, isuby, nvmxsub, nvmysub;

MPI_Request request[4];

udata = NV_DATA_P(u);

/* Get comm, my_pe, subgrid indices, data sizes, extended array uext */

comm = data->comm; my_pe = data->my_pe;

isubx = data->isubx; isuby = data->isuby;

nvmxsub = data->nvmxsub;

nvmysub = NVARS*MYSUB;

uext = data->uext;

/* Start receiving boundary data from neighboring PEs */

BRecvPost(comm, request, my_pe, isubx, isuby, nvmxsub, nvmysub, uext, buffer);

/* Send data from boundary of local grid to neighboring PEs */

BSend(comm, my_pe, isubx, isuby, nvmxsub, nvmysub, udata);

/* Finish receiving boundary data from neighboring PEs */

BRecvWait(request, isubx, isuby, nvmxsub, uext, buffer);

}

/* === */

/* fcalc routine. Compute f(t,y). This routine assumes that communication

between processors of data needed to calculate f has already been done,

and this data is in the work array uext. */

static void fcalc(integertype N, realtype t, realtype udata[], realtype dudata[],

UserData data)

{

realtype *uext;

realtype q3, c1, c2, c1dn, c2dn, c1up, c2up, c1lt, c2lt;

165

realtype c1rt, c2rt, cydn, cyup, hord1, hord2, horad1, horad2;

realtype qq1, qq2, qq3, qq4, rkin1, rkin2, s, vertd1, vertd2, ydn, yup;

realtype q4coef, dely, verdco, hordco, horaco;

int i, lx, ly, jx, jy;

integertype isubx, isuby, nvmxsub, nvmxsub2, offsetu, offsetue;

realtype Q1, Q2, C3, A3, A4, KH, VEL, KV0;

/* Get subgrid indices, data sizes, extended work array uext */

isubx = data->isubx; isuby = data->isuby;

nvmxsub = data->nvmxsub; nvmxsub2 = data->nvmxsub2;

uext = data->uext;

/* Load problem coefficients and parameters */

Q1 = data->p[0];

Q2 = data->p[1];

C3 = data->p[2];

A3 = data->p[3];

A4 = data->p[4];

KH = data->p[5];

VEL = data->p[6];

KV0 = data->p[7];

/* Copy local segment of u vector into the working extended array uext */

offsetu = 0;

offsetue = nvmxsub2 + NVARS;

for (ly = 0; ly < MYSUB; ly++) {

for (i = 0; i < nvmxsub; i++) uext[offsetue+i] = udata[offsetu+i];

offsetu = offsetu + nvmxsub;

offsetue = offsetue + nvmxsub2;

}

/* To facilitate homogeneous Neumann boundary conditions, when this is

a boundary PE, copy data from the first interior mesh line of u to uext */

/* If isuby = 0, copy x-line 2 of u to uext */

if (isuby == 0) {

for (i = 0; i < nvmxsub; i++) uext[NVARS+i] = udata[nvmxsub+i];

}

/* If isuby = NPEY-1, copy x-line MYSUB-1 of u to uext */

if (isuby == NPEY-1) {

offsetu = (MYSUB-2)*nvmxsub;

offsetue = (MYSUB+1)*nvmxsub2 + NVARS;

for (i = 0; i < nvmxsub; i++) uext[offsetue+i] = udata[offsetu+i];

}

/* If isubx = 0, copy y-line 2 of u to uext */

if (isubx == 0) {

for (ly = 0; ly < MYSUB; ly++) {

offsetu = ly*nvmxsub + NVARS;

offsetue = (ly+1)*nvmxsub2;

166

for (i = 0; i < NVARS; i++) uext[offsetue+i] = udata[offsetu+i];

}

}

/* If isubx = NPEX-1, copy y-line MXSUB-1 of u to uext */

if (isubx == NPEX-1) {

for (ly = 0; ly < MYSUB; ly++) {

offsetu = (ly+1)*nvmxsub - 2*NVARS;

offsetue = (ly+2)*nvmxsub2 - NVARS;

for (i = 0; i < NVARS; i++) uext[offsetue+i] = udata[offsetu+i];

}

}

/* Make local copies of problem variables, for efficiency */

dely = data->dy;

verdco = data->vdco;

hordco = data->hdco;

horaco = data->haco;

/* Set diurnal rate coefficients as functions of t, and save q4 in

data block for use by preconditioner evaluation routine */

s = sin((data->om)*t);

if (s > 0.0) {

q3 = exp(-A3/s);

q4coef = exp(-A4/s);

} else {

q3 = 0.0;

q4coef = 0.0;

}

data->q4 = q4coef;

/* Loop over all grid points in local subgrid */

for (ly = 0; ly < MYSUB; ly++) {

jy = ly + isuby*MYSUB;

/* Set vertical diffusion coefficients at jy +- 1/2 */

ydn = YMIN + (jy - .5)*dely;

yup = ydn + dely;

cydn = verdco*exp(0.2*ydn);

cyup = verdco*exp(0.2*yup);

for (lx = 0; lx < MXSUB; lx++) {

jx = lx + isubx*MXSUB;

/* Extract c1 and c2, and set kinetic rate terms */

offsetue = (lx+1)*NVARS + (ly+1)*nvmxsub2;

c1 = uext[offsetue];

c2 = uext[offsetue+1];

qq1 = Q1*c1*C3;

qq2 = Q2*c1*c2;

qq3 = q3*C3;

qq4 = q4coef*c2;

rkin1 = -qq1 - qq2 + 2.0*qq3 + qq4;

rkin2 = qq1 - qq2 - qq4;

167

/* Set vertical diffusion terms */

c1dn = uext[offsetue-nvmxsub2];

c2dn = uext[offsetue-nvmxsub2+1];

c1up = uext[offsetue+nvmxsub2];

c2up = uext[offsetue+nvmxsub2+1];

vertd1 = cyup*(c1up - c1) - cydn*(c1 - c1dn);

vertd2 = cyup*(c2up - c2) - cydn*(c2 - c2dn);

/* Set horizontal diffusion and advection terms */

c1lt = uext[offsetue-2];

c2lt = uext[offsetue-1];

c1rt = uext[offsetue+2];

c2rt = uext[offsetue+3];

hord1 = hordco*(c1rt - 2.0*c1 + c1lt);

hord2 = hordco*(c2rt - 2.0*c2 + c2lt);

horad1 = horaco*(c1rt - c1lt);

horad2 = horaco*(c2rt - c2lt);

/* Load all terms into dudata */

offsetu = lx*NVARS + ly*nvmxsub;

dudata[offsetu] = vertd1 + hord1 + horad1 + rkin1;

dudata[offsetu+1] = vertd2 + hord2 + horad2 + rkin2;

}

}

}

/***************** Functions Called by the CVODES Solver ******************/

/* === */

/* f routine. Evaluate f(t,y). First call ucomm to do communication of

subgrid boundary data into uext. Then calculate f by a call to fcalc. */

static void f(integertype N, realtype t, N_Vector u, N_Vector udot, void *f_data)

{

realtype *udata, *dudata;

UserData data;

udata = NV_DATA_P(u);

dudata = NV_DATA_P(udot);

data = (UserData) f_data;

/* Call ucomm to do inter-processor communicaiton */

ucomm (N, t, u, data);

/* Call fcalc to calculate all right-hand sides */

fcalc (N, t, udata, dudata, data);

}

/* === */

/* Preconditioner setup routine. Generate and preprocess P. */

static int Precond(integertype N, realtype tn, N_Vector u, N_Vector fu,

168

booleantype jok, booleantype *jcurPtr,

realtype gamma, N_Vector ewt, realtype h,

realtype uround, long int *nfePtr, void *P_data,

N_Vector vtemp1, N_Vector vtemp2, N_Vector vtemp3)

{

realtype c1, c2, cydn, cyup, diag, ydn, yup, q4coef, dely, verdco, hordco;

realtype **(*P)[MYSUB], **(*Jbd)[MYSUB];

integertype nvmxsub, *(*pivot)[MYSUB], ier, offset;

int lx, ly, jx, jy, isubx, isuby;

realtype *udata, **a, **j;

PreconData predata;

UserData data;

realtype Q1, Q2, C3, A3, A4, KH, VEL, KV0;

/* Make local copies of pointers in P_data, pointer to u’s data,

and PE index pair */

predata = (PreconData) P_data;

data = (UserData) (predata->f_data);

P = predata->P;

Jbd = predata->Jbd;

pivot = predata->pivot;

udata = NV_DATA_P(u);

isubx = data->isubx; isuby = data->isuby;

nvmxsub = data->nvmxsub;

/* Load problem coefficients and parameters */

Q1 = data->p[0];

Q2 = data->p[1];

C3 = data->p[2];

A3 = data->p[3];

A4 = data->p[4];

KH = data->p[5];

VEL = data->p[6];

KV0 = data->p[7];

if (jok) { /* jok = TRUE: Copy Jbd to P */

for (ly = 0; ly < MYSUB; ly++)

for (lx = 0; lx < MXSUB; lx++)

dencopy(Jbd[lx][ly], P[lx][ly], NVARS);

*jcurPtr = FALSE;

} else { /* jok = FALSE: Generate Jbd from scratch and copy to P */

/* Make local copies of problem variables, for efficiency */

q4coef = data->q4;

dely = data->dy;

verdco = data->vdco;

hordco = data->hdco;

/* Compute 2x2 diagonal Jacobian blocks (using q4 values

169

computed on the last f call). Load into P. */

for (ly = 0; ly < MYSUB; ly++) {

jy = ly + isuby*MYSUB;

ydn = YMIN + (jy - .5)*dely;

yup = ydn + dely;

cydn = verdco*exp(0.2*ydn);

cyup = verdco*exp(0.2*yup);

diag = -(cydn + cyup + 2.0*hordco);

for (lx = 0; lx < MXSUB; lx++) {

jx = lx + isubx*MXSUB;

offset = lx*NVARS + ly*nvmxsub;

c1 = udata[offset];

c2 = udata[offset+1];

j = Jbd[lx][ly];

a = P[lx][ly];

IJth(j,1,1) = (-Q1*C3 - Q2*c2) + diag;

IJth(j,1,2) = -Q2*c1 + q4coef;

IJth(j,2,1) = Q1*C3 - Q2*c2;

IJth(j,2,2) = (-Q2*c1 - q4coef) + diag;

dencopy(j, a, NVARS);

}

}

*jcurPtr = TRUE;

}

/* Scale by -gamma */

for (ly = 0; ly < MYSUB; ly++)

for (lx = 0; lx < MXSUB; lx++)

denscale(-gamma, P[lx][ly], NVARS);

/* Add identity matrix and do LU decompositions on blocks in place */

for (lx = 0; lx < MXSUB; lx++) {

for (ly = 0; ly < MYSUB; ly++) {

denaddI(P[lx][ly], NVARS);

ier = gefa(P[lx][ly], NVARS, pivot[lx][ly]);

if (ier != 0) return(1);

}

}

return(0);

}

/* === */

/* Preconditioner solve routine */

static int PSolve(integertype N, realtype tn, N_Vector u, N_Vector fu,

N_Vector vtemp, realtype gamma, N_Vector ewt, realtype delta,

long int *nfePtr, N_Vector r, int lr, void *P_data, N_Vector z)

170

{

realtype **(*P)[MYSUB];

integertype nvmxsub, *(*pivot)[MYSUB];

int lx, ly;

realtype *zdata, *v;

PreconData predata;

UserData data;

/* Extract the P and pivot arrays from P_data */

predata = (PreconData) P_data;

data = (UserData) (predata->f_data);

P = predata->P;

pivot = predata->pivot;

/* Solve the block-diagonal system Px = r using LU factors stored

in P and pivot data in pivot, and return the solution in z.

First copy vector r to z. */

N_VScale(1.0, r, z);

nvmxsub = data->nvmxsub;

zdata = NV_DATA_P(z);

for (lx = 0; lx < MXSUB; lx++) {

for (ly = 0; ly < MYSUB; ly++) {

v = &(zdata[lx*NVARS + ly*nvmxsub]);

gesl(P[lx][ly], NVARS, pivot[lx][ly], v);

}

}

return(0);

}

171

C Listings of cvodes Adjoint Sensitivity Examples

C.1 A Serial Sample Problem - cvadx.c

/**

* *

* File : cvadx.c *

* Programmers: Radu Serban @ LLNL *

* Version of : 22 March 2002 *

--

* Adjoint sensitivity example problem. *

* The following is a simple example problem, with the coding *

* needed for its solution by CVODES. The problem is from chemical *

* kinetics, and consists of the following three rate equations.. *

* dy1/dt = -p1*y1 + p2*y2*y3 *

* dy2/dt = p1*y1 - p2*y2*y3 - p3*(y2)^2 *

* dy3/dt = p3*(y2)^2 *

* on the interval from t = 0.0 to t = 4.e10, with initial conditions *

* y1 = 1.0, y2 = y3 = 0. The reaction rates are: p1=0.04, p2=1e4, and *

* p3=3e7. The problem is stiff. *

* This program solves the problem with the BDF method, Newton *

* iteration with the CVODE dense linear solver, and a user-supplied *

* Jacobian routine. *

* It uses a scalar relative tolerance and a vector absolute tolerance. *

* Output is printed in decades from t = .4 to t = 4.e10. *

* Run statistics (optional outputs) are printed at the end. *

* *

* Optionally, CVODES can compute sensitivities with respect to the *

* problem parameters p1, p2, and p3 of the following quantity: *

* G = int_t0^t1 g(t,p,y) dt *

* where *

* g(t,p,y) = y1 + p2 * y2 * y3 *

* *

* The gradient dG/dp is obtained as: *

* dG/dp = int_t0^t1 (g_p - lambda^T f_p) dt - lambda^T(t0)*y0_p *

* = - xi^T(t0) - lambda^T(t0)*y0_p *

* where lambda and xi are solutions of: *

* d(lambda)/dt = - (f_y)^T * lambda + (g_y)^T *

* lambda(t1) = 0 *

* and *

* d(xi)/dt = - (f_p)^T * lambda + (g_p)^T *

* xi(t1) = 0 *

* *

* During the backward integration, CVODES also evaluates G as *

* G = - phi(t0) *

* where *

* d(phi)/dt = g(t,y,p) *

* phi(t1) = 0 *

* *

**/

172

#include <stdio.h>

#include <stdlib.h>

#include "sundialstypes.h"

#include "cvodea.h"

#include "cvsdense.h"

#include "nvector_serial.h"

#include "dense.h"

#define Ith(v,i) NV_Ith_S(v,i-1) /* Ith numbers components 1..NEQ */

#define IJth(A,i,j) DENSE_ELEM(A,i-1,j-1) /* IJth numbers rows,cols 1..NEQ */

/* Problem Constants */

#define NEQ 3 /* number of equations */

#define RTOL 1e-4 /* scalar relative tolerance */

#define ATOL1 1e-8 /* vector absolute tolerance components */

#define ATOL2 1e-14

#define ATOL3 1e-6

#define ATOLl 1e-5 /* absolute tolerance for adjoint vars. */

#define ATOLq 1e-6 /* absolute tolerance for quadratures */

#define T0 0.0 /* initial time */

#define TOUT 4e7 /* final time */

#define STEPS 150 /* number of steps between check points */

#define NP 3 /* number of problem parameters */

#define ZERO 0.0

/* Type : UserData */

typedef struct {

realtype p[3];

} *UserData;

/* Functions Called by the CVODES Solver */

/* f is of type RhsFn */

static void f(integertype N, realtype t, N_Vector y, N_Vector ydot, void *f_data);

/* Jac is of type CVDenseJacFn */

static void Jac(integertype N, DenseMat J, RhsFn f, void *f_data, realtype t,

N_Vector y, N_Vector fy, N_Vector ewt, realtype h, realtype uround,

void *jac_data, long int *nfePtr, N_Vector vtemp1,

N_Vector vtemp2, N_Vector vtemp3);

/* fB is of type RhsFnB */

static void fB(integertype NB, realtype t, N_Vector y,

N_Vector yB, N_Vector yBdot, void *f_dataB);

/* JacB is of type CVDenseJacFnB */

173

static void JacB(integertype NB, DenseMat JB, RhsFnB fB, void *f_dataB, realtype t,

N_Vector y, N_Vector yB, N_Vector fyB, N_Vector ewtB, realtype hB,

realtype uroundB, void *jac_dataB, long int *nfePtrB, N_Vector vtemp1B,

N_Vector vtemp2B, N_Vector vtemp3B);

/***************************** Main Program ******************************/

int main(int argc, char *argv[])

{

M_Env machEnvF, machEnvB;

UserData data;

void *cvadj_mem;

void *cvode_mem;

realtype reltol;

N_Vector y, abstol;

realtype reltolB;

N_Vector yB, abstolB;

realtype time;

int flag, ncheck;

/* USER DATA STRUCTURE */

data = (UserData) malloc(sizeof *data);

data->p[0] = 0.04;

data->p[1] = 1.0e4;

data->p[2] = 3.0e7;

/* Initialize serial machine environment for forward integration */

machEnvF = M_EnvInit_Serial(NEQ);

/* Initialize y */

y = N_VNew(NEQ, machEnvF);

Ith(y,1) = 1.0;

Ith(y,2) = 0.0;

Ith(y,3) = 0.0;

/* Set the scalar relative tolerance reltol */

reltol = RTOL;

/* Set the vector absolute tolerance abstol */

abstol = N_VNew(NEQ, machEnvF);

Ith(abstol,1) = ATOL1;

Ith(abstol,2) = ATOL2;

Ith(abstol,3) = ATOL3;

/* Allocate CVODE memory for forward run */

printf("\nAllocate CVODE memory for forward runs\n");

174

cvode_mem = CVodeMalloc(NEQ, f, T0, y, BDF, NEWTON, SV, &reltol, abstol,

data, NULL, FALSE, NULL, NULL, machEnvF);

flag = CVDense(cvode_mem, Jac, NULL);

if (flag != SUCCESS) { printf("CVDense failed.\n"); return(1); }

/* Allocate global memory */

printf("\nAllocate global memory\n");

cvadj_mem = CVadjMalloc(cvode_mem, STEPS);

if (cvadj_mem == NULL) { printf("CVadjMalloc failed.\n"); return(1); }

/* Perform forward run */

printf("\nForward integration\n");

flag = CVodeF(cvadj_mem, TOUT, y, &time, NORMAL, &ncheck);

if (flag != SUCCESS) { printf("CVodeF failed.\n"); return(1); }

/* Test check point linked list */

printf("\nList of Check Points (ncheck = %d)\n", ncheck);

CVadjCheckPointsList(cvadj_mem);

/* Initialize serial machine environment for backward run */

machEnvB = M_EnvInit_Serial(NEQ+NP+1);

/* Initialize yB */

yB = N_VNew(NEQ+NP+1, machEnvB);

Ith(yB,1) = 0.0;

Ith(yB,2) = 0.0;

Ith(yB,3) = 0.0;

Ith(yB,4) = 0.0;

Ith(yB,5) = 0.0;

Ith(yB,6) = 0.0;

Ith(yB,7) = 0.0;

/* Set the scalar relative tolerance reltolB */

reltolB = RTOL;

/* Set the vector absolute tolerance abstolB */

abstolB = N_VNew(NEQ+NP+1, machEnvB);

Ith(abstolB,1) = ATOLl;

Ith(abstolB,2) = ATOLl;

Ith(abstolB,3) = ATOLl;

Ith(abstolB,4) = ATOLq;

Ith(abstolB,5) = ATOLq;

Ith(abstolB,6) = ATOLq;

Ith(abstolB,7) = ATOLq;

/* Allocate CVODE memory for backward run */

printf("\nAllocate CVODE memory for backward run\n");

flag = CVodeMallocB(cvadj_mem, NEQ+NP+1, fB, yB, BDF, NEWTON, SV,

&reltolB, abstolB, data, NULL,

FALSE, NULL, NULL, machEnvB);

if (flag != SUCCESS) { printf("CVodeMallocB failed.\n"); return(1); }

175

flag = CVDenseB(cvadj_mem, JacB, NULL);

if (flag != SUCCESS) { printf("CVDenseB failed.\n"); return(1); }

/* Backward Integration */

flag = CVodeB(cvadj_mem, yB);

if (flag < 0) { printf("CVodeB failed.\n"); return(1); }

printf("\n\n==\n");

printf("G: %12.4e \n",-Ith(yB,7));

printf("Gp: %12.4e %12.4e %12.4e\n",

-Ith(yB,4), -Ith(yB,5), -Ith(yB,6));

printf("==\n");

printf("lambda(t0): %12.4e %12.4e %12.4e\n",

Ith(yB,1), Ith(yB,2), Ith(yB,3));

printf("==\n");

/* Free memory */

printf("\nFree memory\n");

CVodeFree(cvode_mem);

CVadjFree(cvadj_mem);

N_VFree(y);

N_VFree(yB);

N_VFree(abstol);

N_VFree(abstolB);

free(data);

M_EnvFree_Serial(machEnvF);

M_EnvFree_Serial(machEnvB);

return(0);

}

/***************** Functions Called by the CVODE Solver ******************/

/* f routine. Compute f(t,y). */

static void f(integertype N, realtype t, N_Vector y, N_Vector ydot, void *f_data)

{

realtype y1, y2, y3, yd1, yd3;

UserData data;

realtype p1, p2, p3;

y1 = Ith(y,1); y2 = Ith(y,2); y3 = Ith(y,3);

data = (UserData) f_data;

p1 = data->p[0]; p2 = data->p[1]; p3 = data->p[2];

yd1 = Ith(ydot,1) = -p1*y1 + p2*y2*y3;

yd3 = Ith(ydot,3) = p3*y2*y2;

Ith(ydot,2) = -yd1 - yd3;

}

176

/* Jacobian routine. Compute J(t,y). */

static void Jac(integertype N, DenseMat J, RhsFn f, void *f_data, realtype t,

N_Vector y, N_Vector fy, N_Vector ewt, realtype h, realtype uround,

void *jac_data, long int *nfePtr, N_Vector vtemp1,

N_Vector vtemp2, N_Vector vtemp3)

{

realtype y1, y2, y3;

UserData data;

realtype p1, p2, p3;

y1 = Ith(y,1); y2 = Ith(y,2); y3 = Ith(y,3);

data = (UserData) f_data;

p1 = data->p[0]; p2 = data->p[1]; p3 = data->p[2];

IJth(J,1,1) = -p1; IJth(J,1,2) = p2*y3; IJth(J,1,3) = p2*y2;

IJth(J,2,1) = p1; IJth(J,2,2) = -p2*y3-2*p3*y2; IJth(J,2,3) = -p2*y2;

IJth(J,3,2) = 2*p3*y2;

}

/* fB routine. Compute fB(t,y,yB). */

static void fB(integertype NB, realtype t, N_Vector y,

N_Vector yB, N_Vector yBdot, void *f_dataB)

{

UserData data;

realtype y1, y2, y3;

realtype p1, p2, p3;

realtype l1, l2, l3;

realtype l21, l32, y23;

data = (UserData) f_dataB;

/* The p vector */

p1 = data->p[0]; p2 = data->p[1]; p3 = data->p[2];

/* The y vector */

y1 = Ith(y,1); y2 = Ith(y,2); y3 = Ith(y,3);

/* The lambda vector */

l1 = Ith(yB,1); l2 = Ith(yB,2); l3 = Ith(yB,3);

/* Temporary variables */

l21 = l2-l1;

l32 = l3-l2;

y23 = y2*y3;

/* Load yBdot */

Ith(yBdot,1) = - p1*l21 - 1.0;

Ith(yBdot,2) = p2*y3*l21 - 2.0*p3*y2*l32 - p2*y3;

Ith(yBdot,3) = p2*y2*l21 - p2*y2;

Ith(yBdot,4) = y1*l21;

Ith(yBdot,5) = - y23*l21 + y23;

177

Ith(yBdot,6) = y2*y2*l32;

Ith(yBdot,7) = y1+p2*y23;

}

/* JacB routine. Compute JB(t,y,yB). */

static void JacB(integertype NB, DenseMat JB, RhsFnB fB, void *f_dataB, realtype t,

N_Vector y, N_Vector yB, N_Vector fyB, N_Vector ewtB, realtype hB,

realtype uroundB, void *jac_dataB, long int *nfePtrB, N_Vector vtemp1B,

N_Vector vtemp2B, N_Vector vtemp3B)

{

UserData data;

realtype y1, y2, y3;

realtype p1, p2, p3;

data = (UserData) f_dataB;

/* The p vector */

p1 = data->p[0]; p2 = data->p[1]; p3 = data->p[2];

/* The y vector */

y1 = Ith(y,1); y2 = Ith(y,2); y3 = Ith(y,3);

/* Load JB */

IJth(JB,1,1) = p1; IJth(JB,1,2) = -p1;

IJth(JB,2,1) = -p2*y3; IJth(JB,2,2) = p2*y3+2.0*p3*y2; IJth(JB,2,3) = -2.0*p3*y2;

IJth(JB,3,1) = -p2*y2; IJth(JB,3,2) = p2*y2;

IJth(JB,4,1) = -y1; IJth(JB,4,2) = y1;

IJth(JB,5,1) = y2*y3; IJth(JB,5,2) = -y2*y3;

IJth(JB,6,2) = -y2*y2; IJth(JB,6,3) = y2*y2;

}

178

C.2 A Parallel Sample Program - pvanx.c

/**

* *

* File : pvanx.c *

* Programmers: Radu Serban @ LLNL *

* Version of : 21 May 2002 *

--

* Example problem. *

* The following is a simple example problem, with the program for its *

* solution by CVODE. The problem is the semi-discrete form of the *

* advection-diffusion equation in 1-D: *

* du/dt = p1 * d^2u / dx^2 + p2 * du / dx *

* on the interval 0 <= x <= 2, and the time interval 0 <= t <= 5. *

* Homogeneous Dirichlet boundary conditions are posed, and the *

* initial condition is *

* u(x,t=0) = x(2-x)exp(2x) . *

* The nominal values of the two parameters are: p1=1.0, p2=0.5 *

* The PDE is discretized on a uniform grid of size MX+2 with *

* central differencing, and with boundary values eliminated, *

* leaving an ODE system of size NEQ = MX. *

* This program solves the problem with the option for nonstiff systems:*

* ADAMS method and functional iteration. *

* It uses scalar relative and absolute tolerances. *

* *

* In addition to the solution, sensitivities with respect to p1 and p2 *

* as well as with respect to initial conditions are computed for the *

* quantity: *

* g(t, u, p) = int_x u(x,t) at t = 5 *

* These sensitivities are obtained by solving the adjoint system: *

* dv/dt = -p1 * d^2 v / dx^2 + p2 * dv / dx *

* with homogeneous Ditrichlet boundary conditions and the final *

* condition *

* v(x,t=5) = 1.0 *

* Then, v(x, t=0) represents the sensitivity of g(5) with respect to *

* u(x, t=0) and the gradient of g(5) with respect to p1, p2 is *

* (dg/dp)^T = [int_t int_x (v * d^2u / dx^2) dx dt] *

* [int_t int_x (v * du / dx) dx dt] *

* *

* This version uses MPI for user routines. *

* Execute with Number of Processors = N, with 1 <= N <= MX. *

**/

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include "sundialstypes.h"

#include "cvodea.h"

#include "nvector_parallel.h"

#include "mpi.h"

179

/* Problem Constants */

#define XMAX 2.0 /* domain boundary */

#define MX 20 /* mesh dimension */

#define NEQ MX /* number of equations */

#define ATOL 1.e-5 /* scalar absolute tolerance */

#define T0 0.0 /* initial time */

#define TOUT 2.5 /* output time increment */

/* Adjoint Problem Constants */

#define NP 2 /* number of parameters */

#define STEPS 100 /* steps between check points */

/* Type : UserData */

typedef struct {

realtype p[2]; /* model parameters */

realtype dx; /* spatial discretization grid */

realtype hdcoef, hacoef; /* diffusion and advection coefficients */

integertype npes, my_pe; /* total number of processes and current ID */

MPI_Comm comm; /* MPI communicator */

realtype *z1, *z2; /* work space */

} *UserData;

/* Private Helper Functions */

static void SetIC(N_Vector u, realtype dx, integertype my_length,

integertype my_base);

static void SetICback(N_Vector uB, integertype my_base);

static realtype Xintgr(realtype *z, integertype l, realtype dx);

static realtype Compute_g(N_Vector u, UserData data);

/* Functions Called by the CVODES Solver */

static void f(integertype N, realtype t, N_Vector u, N_Vector udot, void *f_data);

static void fB(integertype NB, realtype t, N_Vector u,

N_Vector uB, N_Vector uBdot, void *f_dataB);

/***************************** Main Program ******************************/

int main(int argc, char *argv[])

{

M_Env machEnvF, machEnvB;

UserData data;

void *cvadj_mem;

void *cvode_mem;

long int iopt[OPT_SIZE];

realtype ropt[OPT_SIZE];

N_Vector u;

realtype reltol, abstol;

180

N_Vector uB;

realtype *uBdata;

realtype dx, t, umax, g_val;

int flag, my_pe, nprocs, npes, ncheck;

integertype local_N, nperpe, nrem, my_base, i, iglobal;

MPI_Comm comm;

/* Initialize MPI and get total number of pe’s, and my_pe. */

MPI_Init(&argc, &argv);

comm = MPI_COMM_WORLD;

MPI_Comm_size(comm, &nprocs);

MPI_Comm_rank(comm, &my_pe);

npes = nprocs - 1; /* pe’s dedicated to PDE integration */

/* Allocate and load user data structure */

data = (UserData) malloc(sizeof *data);

data->p[0] = 1.0;

data->p[1] = 0.5;

dx = data->dx = XMAX/((realtype)(MX+1));

data->hdcoef = data->p[0]/(dx*dx);

data->hacoef = data->p[1]/(2.0*dx);

data->comm = comm;

data->npes = npes;

data->my_pe = my_pe;

/* Set local vector length. */

if (my_pe < npes) {

nperpe = NEQ/npes;

nrem = NEQ - npes*nperpe;

local_N = (my_pe < nrem) ? nperpe+1 : nperpe;

my_base = (my_pe < nrem) ? my_pe*local_N : my_pe*nperpe + nrem;

}

/*-------------------------

FORWARD INTEGRATION PHASE

---------------------------*/

/* Make last process inactive for forward phase */

if (my_pe == npes) local_N = 0;

/* Initialize machine environment for forward phase */

machEnvF = M_EnvInit_Parallel(comm, local_N, NEQ, &argc, &argv);

if (machEnvF == NULL) {

if(my_pe == 0) printf("M_EnvInit_Parallel failed.\n");

return(1);

}

181

/* Set relative and absolute tolerances for forward phase */

reltol = 0.0;

abstol = ATOL;

/* Allocate and initialize forward variables */

u = N_VNew(NEQ, machEnvF);

SetIC(u, dx, local_N, my_base);

/* Allocate CVODES memory for forward integration */

cvode_mem = CVodeMalloc(NEQ, f, T0, u, ADAMS, FUNCTIONAL, SS, &reltol,

&abstol, data, NULL, FALSE, iopt, ropt, machEnvF);

if (cvode_mem == NULL) {

if(my_pe == 0) printf("CVodeMalloc failed.\n");

return(1);

}

/* Allocate combined forward/backward memory */

cvadj_mem = CVadjMalloc(cvode_mem, STEPS);

/* Integrate to TOUT and collect check point information */

flag = CVodeF(cvadj_mem, TOUT, u, &t, NORMAL, &ncheck);

if (flag != SUCCESS) {

if(my_pe == 0) printf("CVode failed, flag=%d.\n", flag);

return(1);

}

/* Compute and print value of g(5) */

g_val = Compute_g(u, data);

if(my_pe == npes) {

printf("\n (PE# %d)\n", my_pe);

printf(" g(t1) = %g\n", g_val);

}

/*--------------------------

BACKWARD INTEGRATION PHASE

----------------------------*/

/* Allocate work space */

data->z1 = (realtype *)malloc(local_N*sizeof(realtype));

data->z2 = (realtype *)malloc(local_N*sizeof(realtype));

/* Activate last process for integration of the quadrature equations */

if(my_pe == npes) local_N = NP;

/* Initialize machine environment for backward phase */

machEnvB = M_EnvInit_Parallel(comm, local_N, NEQ+NP, &argc, &argv);

if (machEnvB == NULL) {

if(my_pe == 0) printf("M_EnvInit_Parallel failed.\n");

return(1);

}

182

/* Allocate and initialize backward variables */

uB = N_VNew(NEQ+NP, machEnvB);

SetICback(uB, my_base);

/* Allocate CVODES memory for the backward integration */

flag = CVodeMallocB(cvadj_mem, NEQ+NP, fB, uB, ADAMS, FUNCTIONAL, SS, &reltol,

&abstol, data, NULL, FALSE, NULL, NULL, machEnvB);

if (flag != SUCCESS) {

if(my_pe == 0) printf("CVodeMallocB failed, flag=%d.\n", flag);

return(1);

}

/* Integrate to T0 */

flag = CVodeB(cvadj_mem, uB);

if (flag < 0) {

if(my_pe == 0) printf("CVodeB failed, flag=%d.\n", flag);

return(1);

}

/* Print results (adjoint states and quadrature variables) */

uBdata = NV_DATA_P(uB);

printf("\n (PE# %d)\n", my_pe);

if (my_pe == npes) {

printf(" dgdp(t1) = [%g %g]\n", -uBdata[0], -uBdata[1]);

} else {

for (i=1; i<=local_N; i++) {

iglobal = my_base + i;

printf(" mu(t0)[%2d] = %g\n", iglobal, uBdata[i-1]);

}

}

/* Clean-Up */

N_VFree(u); /* forward variables */

N_VFree(uB); /* backward variables */

CVodeFree(cvode_mem); /* CVODES memory block */

CVadjFree(cvadj_mem); /* combined memory block */

free(data->z1); free(data->z2); free(data); /* user data structure */

M_EnvFree_Parallel(machEnvF); /* forward M_Env */

M_EnvFree_Parallel(machEnvB); /* backward M_Env */

/* Finalize MPI */

MPI_Finalize();

return(0);

}

/************************ Private Helper Functions ***********************/

/* Set initial conditions in u vector */

static void SetIC(N_Vector u, realtype dx, integertype my_length,

183

integertype my_base)

{

int i;

integertype iglobal;

realtype x;

realtype *udata;

/* Set pointer to data array and get local length of u */

udata = NV_DATA_P(u);

my_length = NV_LOCLENGTH_P(u);

/* Load initial profile into u vector */

for (i=1; i<=my_length; i++) {

iglobal = my_base + i;

x = iglobal*dx;

udata[i-1] = x*(XMAX - x)*exp(2.0*x);

}

}

/* Set final conditions in uB vector */

static void SetICback(N_Vector uB, integertype my_base)

{

int i;

realtype *uBdata;

integertype my_length;

/* Set pointer to data array and get local length of uB */

uBdata = NV_DATA_P(uB);

my_length = NV_LOCLENGTH_P(uB);

/* Set adjoint states to 1.0 and quadrature variables to 0.0 */

if(my_base == -1) for (i=0; i<my_length; i++) uBdata[i] = 0.0;

else for (i=0; i<my_length; i++) uBdata[i] = 1.0;

}

/* Compute local value of the space integral int_x z(x) dx */

static realtype Xintgr(realtype *z, integertype l, realtype dx)

{

realtype my_intgr;

integertype i;

my_intgr = 0.5*(z[0] + z[l-1]);

for (i = 1; i < l-1; i++)

my_intgr += z[i];

my_intgr *= dx;

return(my_intgr);

}

/* Compute value of g(u) */

static realtype Compute_g(N_Vector u, UserData data)

184

{

realtype intgr, my_intgr, dx, *udata;

integertype my_length;

int npes, my_pe, i;

MPI_Status status;

MPI_Comm comm;

/* Extract MPI info. from data */

comm = data->comm;

npes = data->npes;

my_pe = data->my_pe;

dx = data->dx;

if (my_pe == npes) { /* Loop over all other processes and sum */

intgr = 0.0;

for (i=0; i<npes; i++) {

MPI_Recv(&my_intgr, 1, PVEC_REAL_MPI_TYPE, i, 0, comm, &status);

intgr += my_intgr;

}

return(intgr);

} else { /* Compute local portion of the integral */

udata = NV_DATA_P(u);

my_length = NV_LOCLENGTH_P(u);

my_intgr = Xintgr(udata, my_length, dx);

MPI_Send(&my_intgr, 1, PVEC_REAL_MPI_TYPE, npes, 0, comm);

return(my_intgr);

}

}

/***************** Function Called by the CVODE Solver ******************/

/* f routine. Compute f(t,u) for forward phase. */

static void f(integertype N, realtype t, N_Vector u, N_Vector udot, void *f_data)

{

realtype uLeft, uRight, ui, ult, urt;

realtype hordc, horac, hdiff, hadv;

realtype *udata, *dudata;

integertype i, my_length;

int npes, my_pe, my_pe_m1, my_pe_p1, last_pe, my_last;

UserData data;

MPI_Status status;

MPI_Comm comm;

/* Extract MPI info. from data */

data = (UserData) f_data;

comm = data->comm;

npes = data->npes;

my_pe = data->my_pe;

/* If this process is inactive, return now */

185

if (my_pe == npes) return;

/* Extract problem constants from data */

hordc = data->hdcoef;

horac = data->hacoef;

/* Find related processes */

my_pe_m1 = my_pe - 1;

my_pe_p1 = my_pe + 1;

last_pe = npes - 1;

/* Obtain local arrays */

udata = NV_DATA_P(u);

dudata = NV_DATA_P(udot);

my_length = NV_LOCLENGTH_P(u);

my_last = my_length - 1;

/* Pass needed data to processes before and after current process. */

if (my_pe != 0)

MPI_Send(&udata[0], 1, PVEC_REAL_MPI_TYPE, my_pe_m1, 0, comm);

if (my_pe != last_pe)

MPI_Send(&udata[my_length-1], 1, PVEC_REAL_MPI_TYPE, my_pe_p1, 0, comm);

/* Receive needed data from processes before and after current process. */

if (my_pe != 0)

MPI_Recv(&uLeft, 1, PVEC_REAL_MPI_TYPE, my_pe_m1, 0, comm, &status);

else uLeft = 0.0;

if (my_pe != last_pe)

MPI_Recv(&uRight, 1, PVEC_REAL_MPI_TYPE, my_pe_p1, 0, comm,

&status);

else uRight = 0.0;

/* Loop over all grid points in current process. */

for (i=0; i<my_length; i++) {

/* Extract u at x_i and two neighboring points */

ui = udata[i];

ult = (i==0) ? uLeft: udata[i-1];

urt = (i==my_length-1) ? uRight : udata[i+1];

/* Set diffusion and advection terms and load into udot */

hdiff = hordc*(ult - 2.0*ui + urt);

hadv = horac*(urt - ult);

dudata[i] = hdiff + hadv;

}

}

/* fB routine. Compute right hand side of backward problem */

static void fB(integertype NB, realtype t, N_Vector u,

N_Vector uB, N_Vector uBdot, void *f_dataB)

{

186

realtype *uBdata, *duBdata, *udata, *zB;

realtype uBLeft, uBRight, uBi, uBlt, uBrt;

realtype uLeft, uRight, ui, ult, urt;

realtype dx, hordc, horac, hdiff, hadv;

realtype *z1, *z2, intgr1, intgr2;

integertype i, my_length;

int npes, my_pe, my_pe_m1, my_pe_p1, last_pe, my_last;

UserData data;

MPI_Status status;

MPI_Comm comm;

/* Extract MPI info. from data */

data = (UserData) f_dataB;

comm = data->comm;

npes = data->npes;

my_pe = data->my_pe;

if (my_pe == npes) { /* This process performs the quadratures */

/* Obtain local arrays */

duBdata = NV_DATA_P(uBdot);

my_length = NV_LOCLENGTH_P(uB);

/* Loop over all other processes and load right hand side of quadrature eqs. */

duBdata[0] = 0.0;

duBdata[1] = 0.0;

for (i=0; i<npes; i++) {

MPI_Recv(&intgr1, 1, PVEC_REAL_MPI_TYPE, i, 0, comm, &status);

duBdata[0] += intgr1;

MPI_Recv(&intgr2, 1, PVEC_REAL_MPI_TYPE, i, 0, comm, &status);

duBdata[1] += intgr2;

}

} else { /* This process integrates part of the PDE */

/* Extract problem constants and work arrays from data */

dx = data->dx;

hordc = data->hdcoef;

horac = data->hacoef;

z1 = data->z1;

z2 = data->z2;

/* Compute related parameters. */

my_pe_m1 = my_pe - 1;

my_pe_p1 = my_pe + 1;

last_pe = npes - 1;

my_last = my_length - 1;

/* Obtain local arrays */

uBdata = NV_DATA_P(uB);

duBdata = NV_DATA_P(uBdot);

187

udata = NV_DATA_P(u);

my_length = NV_LOCLENGTH_P(uB);

/* Pass needed data to processes before and after current process. */

if (my_pe != 0) {

MPI_Send(&udata[0], 1, PVEC_REAL_MPI_TYPE, my_pe_m1, 0, comm);

MPI_Send(&uBdata[0], 1, PVEC_REAL_MPI_TYPE, my_pe_m1, 0, comm);

}

if (my_pe != last_pe) {

MPI_Send(&udata[my_length-1], 1, PVEC_REAL_MPI_TYPE, my_pe_p1, 0, comm);

MPI_Send(&uBdata[my_length-1], 1, PVEC_REAL_MPI_TYPE, my_pe_p1, 0, comm);

}

/* Receive needed data from processes before and after current process. */

if (my_pe != 0) {

MPI_Recv(&uLeft, 1, PVEC_REAL_MPI_TYPE, my_pe_m1, 0, comm, &status);

MPI_Recv(&uBLeft, 1, PVEC_REAL_MPI_TYPE, my_pe_m1, 0, comm, &status);

} else {

uLeft = 0.0;

uBLeft = 0.0;

}

if (my_pe != last_pe) {

MPI_Recv(&uRight, 1, PVEC_REAL_MPI_TYPE, my_pe_p1, 0, comm, &status);

MPI_Recv(&uBRight, 1, PVEC_REAL_MPI_TYPE, my_pe_p1, 0, comm, &status);

} else {

uRight = 0.0;

uBRight = 0.0;

}

/* Loop over all grid points in current process. */

for (i=0; i<my_length; i++) {

/* Extract uB at x_i and two neighboring points */

uBi = uBdata[i];

uBlt = (i==0) ? uBLeft: uBdata[i-1];

uBrt = (i==my_length-1) ? uBRight : uBdata[i+1];

/* Set diffusion and advection terms and load into udot */

hdiff = hordc*(uBlt - 2.0*uBi + uBrt);

hadv = horac*(uBrt - uBlt);

duBdata[i] = - hdiff + hadv;

/* Extract u at x_i and two neighboring points */

ui = udata[i];

ult = (i==0) ? uLeft: udata[i-1];

urt = (i==my_length-1) ? uRight : udata[i+1];

/* Load integrands of the two space integrals */

z1[i] = uBdata[i]*(ult - 2.0*ui + urt)/(dx*dx);

z2[i] = uBdata[i]*(urt - ult)/(2.0*dx);

}

188

/* Compute local integrals */

intgr1 = Xintgr(z1, my_length, dx);

intgr2 = Xintgr(z2, my_length, dx);

/* Send local integrals to ’quadrature’ process */

MPI_Send(&intgr1, 1, PVEC_REAL_MPI_TYPE, npes, 0, comm);

MPI_Send(&intgr2, 1, PVEC_REAL_MPI_TYPE, npes, 0, comm);

}

}

189

